Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II Analyses of the Thin Line Structure and Convection Initiation

Hanne V. Murphey Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Hanne V. Murphey in
Current site
Google Scholar
PubMed
Close
,
Roger M. Wakimoto Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Roger M. Wakimoto in
Current site
Google Scholar
PubMed
Close
,
Cyrille Flamant Institut Pierre-Simon Laplace/Service d'Aeronomie, Paris, France

Search for other papers by Cyrille Flamant in
Current site
Google Scholar
PubMed
Close
, and
David E. Kingsmill Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by David E. Kingsmill in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The evolution and finescale structure of a dryline that initiated a line of thunderstorms is presented. Both the along-line variability and mean vertical structure were examined using data collected by an airborne Doppler radar and a water vapor differential absorption lidar (DIAL). The initiation of convection appeared to result from the diurnally induced easterly flow in the maritime air east of the dryline that typically develops late in the day. This flow increased the low-level convergence and allowed rising parcels of air to reach the level of free convection. The along-line variability was largely attributed to numerous misocyclones distorting the thin line of radar reflectivity by advecting dry (moist) air across the dryline south (north) of the misocyclone. The misocyclones also influenced the location of the updrafts, with most of the peak values positioned north of the circulations. As a result, these updrafts were fortuitously positioned in regions of high mixing ratio where the first convective cells initiated.

* Current affiliation: Earth Observing Laboratory, NCAR, Boulder, Colorado.

Corresponding author address: Hanne V. Murphey, Dept. of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, CA 90095. Email: hanne@atmos.ucla.edu

Abstract

The evolution and finescale structure of a dryline that initiated a line of thunderstorms is presented. Both the along-line variability and mean vertical structure were examined using data collected by an airborne Doppler radar and a water vapor differential absorption lidar (DIAL). The initiation of convection appeared to result from the diurnally induced easterly flow in the maritime air east of the dryline that typically develops late in the day. This flow increased the low-level convergence and allowed rising parcels of air to reach the level of free convection. The along-line variability was largely attributed to numerous misocyclones distorting the thin line of radar reflectivity by advecting dry (moist) air across the dryline south (north) of the misocyclone. The misocyclones also influenced the location of the updrafts, with most of the peak values positioned north of the circulations. As a result, these updrafts were fortuitously positioned in regions of high mixing ratio where the first convective cells initiated.

* Current affiliation: Earth Observing Laboratory, NCAR, Boulder, Colorado.

Corresponding author address: Hanne V. Murphey, Dept. of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, CA 90095. Email: hanne@atmos.ucla.edu

Save
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev, 123 , 944969.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev, 126 , 525550.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1959: Meteorological “angel” echoes. J. Meteor, 16 , 611.

  • Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, 60 pp. [Available from the National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.].

  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observation of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev, 116 , 17901804.

    • Search Google Scholar
    • Export Citation
  • Brady, R. H., and E. J. Szoke, 1989: A case study of non-mesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev, 117 , 843856.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, 2001: Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. Appl. Opt, 40 , 34503475.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci, 39 , 258279.

  • Christian, T. W., and R. M. Wakimoto, 1989: The relationship between radar reflectivity and clouds associated with horizontal convective rolls. Mon. Wea. Rev, 117 , 15301544.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage during COPS-91. Mon. Wea. Rev, 125 , 463477.

  • Cressman, G. P., 1959: An operational objective analysis scheme. Mon. Wea. Rev, 87 , 367384.

  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev, 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and J. B. Klemp, 2000: Lifting by convergence lines. J. Atmos. Sci, 57 , 873890.

  • Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev, 123 , 291313.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and R. S. du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor, 8 , 249253.

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci, 38 , 15111534.

  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc, 74 , 21332145.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev, 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., R. M. Rabin, T. M. Crawford, H. B. Bluestein, and M. E. Baldwin, 2002: A case study of severe storm development along a dryline within a synoptically active environment. Part II: Multiple boundaries and convective initiation. Mon. Wea. Rev, 130 , 900920.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design and first field tests. Proc. IEEE, 82 , 18731890.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc, 77 , 213232.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: The substructure of narrow cold-frontal rainbands. J. Atmos. Sci, 39 , 280295.

    • Search Google Scholar
    • Export Citation
  • Jones, P. A., and P. R. Bannon, 2002: A mixed-layer model of the diurnal dryline. J. Atmos. Sci, 59 , 25822593.

  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Phys, 59 , 83104.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and D. Waldvogel, 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 153–156.

  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev, 123 , 29132933.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci, 40 , 359377.

  • Knight, C. A., and L. J. Miller, 1993: First echoes from cumulus clouds. Bull. Amer. Meteor. Soc, 74 , 179188.

  • Koch, S. E., 1982: The role of apparent gravity waves as a triggering mechanism for severe thunderstorm along a dryline. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 573–576.

  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline. Part II: Boundary-layer forcing of mesoconvective systems. J. Atmos. Sci, 39 , 237257.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci, 54 , 3260.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., R. D. Farley, and M. R. Hjelmfelt, 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci, 48 , 23502366.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., 1982: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL-82, 11 pp. [Available from NOAA ERL, 325 Broadway, Boulder, CO 80303.].

  • Miles, J. W., and L. N. Howard, 1964: Note on heterogeneous shear flow. J. Fluid Mech, 20 , 331336.

  • Miller, J. A., T. A. Kovacs, and P. R. Bannon, 2001: A shallow-water model of the diurnal dryline. J. Atmos. Sci, 58 , 35083524.

  • Mohr, C. G., L. J. Miller, R. L. Vaughn, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol, 3 , 146161.

    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., and R. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci, 44 , 18791898.

  • Olsen, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10 , 498511.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Purdom, J. F., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev, 104 , 14741483.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F., 1982: Subjective interpretation of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor, 5 , 5863.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci, 45 , 463485.

  • Schaefer, J. T., 1974: The life cycle of the dryline. J. Appl. Meteor, 13 , 444449.

  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Stensrud, D. J., and R. A. Maddox, 1988: Opposing mesoscale circulations: A case study. Wea. Forecasting, 3 , 189204.

  • Testud, J., P. H. Hildebrand, and W-C. Lee, 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth's surface. J. Atmos. Oceanic Technol, 12 , 800820.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev, 117 , 11131140.

  • Wakimoto, R. M., and B. L. Bosart, 2000: Airborne radar observations of a cold front during FASTEX. Mon. Wea. Rev, 128 , 24472470.

  • Wakimoto, R. M., W-C. Lee, H. B. Bluestein, C-H. Liu, and P. H. Hildebrand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc, 77 , 14651481.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, R. G. Fovell, and W-C. Lee, 2004: Mantle echoes associated with deep convection: Observations and numerical simulations. Mon. Wea. Rev, 132 , 17011720.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev, 128 , 40174030.

  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev, 120 , 21692187.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev, 124 , 769784.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev, 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar observed boundary-layer convergence lines. Mon. Wea. Rev, 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8 , 113131.

  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev, 125 , 15071525.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, and C. K. Mueller, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev, 120 , 17851815.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol, 11 , 11841206.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc, 79 , 20792099.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev, 121 , 11341151.

  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci, 52 , 263284.

  • Ziegler, C. L., T. J. Lee, and R. A. Pielke, 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev, 125 , 10011026.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 954 266 25
PDF Downloads 164 47 1