The “Triple Point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE Analyses of the Frontal Boundaries and Convection Initiation

Roger M. Wakimoto Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Roger M. Wakimoto in
Current site
Google Scholar
PubMed
Close
,
Hanne V. Murphey Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Hanne V. Murphey in
Current site
Google Scholar
PubMed
Close
,
Edward V. Browell NASA Langley Research Center, Hampton, Virginia

Search for other papers by Edward V. Browell in
Current site
Google Scholar
PubMed
Close
, and
Syed Ismail NASA Langley Research Center, Hampton, Virginia

Search for other papers by Syed Ismail in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An analysis of the initiation of deep convection near the triple point between a cold front and dryline is presented. High-spatial-resolution Doppler wind syntheses combined with vertical cross sections of mixing ratio (q) and aerosol scattering ratio retrieved from a lidar flying over the triple point provide an unprecedented view of the initiation process. The Doppler wind synthesis revealed variability along the dryline similar to the precipitation core/gap structure documented for oceanic cold fronts. Vertical cross sections through the dryline suggest a density current–like structure with the hot and dry air being forced up and over the moist air. Double thin lines associated with moisture gradients were also resolved. The vertical profile of retrieved q, approximately perpendicular to the dryline, showed a pronounced jump in the depth of the moisture layer across the triple point. Analyses of dropsonde data show the existence of virtual potential temperature (θV ) gradients across the cold front and the dryline. Although the vertical velocity was strong at the triple point, deep convection initiated ∼50 km to the east. The location where convection first developed was characterized by a prominent aerosol and moisture plume, reduced static stability, and the largest potential instability. An internal gravity wave may have provided the lift to initiate convection.

* Currrent affiliation: Earth Observing Laboratory, NCAR, Boulder, Colorado

Corresponding author address: Roger M. Wakimoto, NCAR/EOL, P.O. Box 3000, Boulder, CO 80307. Email: wakimoto@ucar.edu

Abstract

An analysis of the initiation of deep convection near the triple point between a cold front and dryline is presented. High-spatial-resolution Doppler wind syntheses combined with vertical cross sections of mixing ratio (q) and aerosol scattering ratio retrieved from a lidar flying over the triple point provide an unprecedented view of the initiation process. The Doppler wind synthesis revealed variability along the dryline similar to the precipitation core/gap structure documented for oceanic cold fronts. Vertical cross sections through the dryline suggest a density current–like structure with the hot and dry air being forced up and over the moist air. Double thin lines associated with moisture gradients were also resolved. The vertical profile of retrieved q, approximately perpendicular to the dryline, showed a pronounced jump in the depth of the moisture layer across the triple point. Analyses of dropsonde data show the existence of virtual potential temperature (θV ) gradients across the cold front and the dryline. Although the vertical velocity was strong at the triple point, deep convection initiated ∼50 km to the east. The location where convection first developed was characterized by a prominent aerosol and moisture plume, reduced static stability, and the largest potential instability. An internal gravity wave may have provided the lift to initiate convection.

* Currrent affiliation: Earth Observing Laboratory, NCAR, Boulder, Colorado

Corresponding author address: Roger M. Wakimoto, NCAR/EOL, P.O. Box 3000, Boulder, CO 80307. Email: wakimoto@ucar.edu

Save
  • Asai, T., 1970: Three-dimensional features of thermal convection in a plane Couette flow. J. Meteor. Soc. Japan, 48 , 1829.

  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev, 126 , 525550.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low-precipitaion severe thunderstorms in the southern plains. Mon. Wea. Rev, 111 , 20342046.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev, 121 , 13521374.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, R. L. Walko, and R. Davies-Jones, 1990: An observational study of convective clouds. Mon. Wea. Rev, 118 , 13591370.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 1997: LASE validation experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer-Verlag, 289–295.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 2003: Airborne remote measurements of water vapor, relative humidity, aerosol, and cloud distributions during the IHOP field experiment. Proc. Sixth Int. Symp. on Tropospheric Profiling, Leipzig, Germany, Institute for Tropospheric Research, 384–386.

  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space Phys, 18 , 683697.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage during COPS-91. Mon. Wea. Rev, 125 , 463477.

  • Cressman, G. P., 1959: An operational objective analysis scheme. Mon. Wea. Rev, 87 , 367384.

  • Doswell, C. A., and L. F. Bosart, 2001: Extratropical synoptic-scale processes and severe convection. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 27–69.

  • Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Foote, G. B., and R. S. du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor, 8 , 249253.

  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc, 74 , 21332145.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., B. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev, 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., M. E. Baldwin, H. B. Bluestein, T. M. Crawford, and R. M. Rabin, 2001: A case study of severe storm development along a dryline within a synoptically active environment. Part I: Dryline motion and an Eta Model forecast. Mon. Wea. Rev, 129 , 21832204.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., R. M. Rabin, T. M. Crawford, H. B. Bluestein, and M. E. Baldwin, 2002: A case study of severe storm development along a dryline within a synoptically active environment. Part II: Multiple boundaries and convective initiation. Mon. Wea. Rev, 130 , 900920.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., C. A. Walther, C. L. Frush, J. Testud, and F. Baudin, 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first tests. Proc. IEEE, 82 , 18731890.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc, 77 , 213232.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and K. R. Biswas, 1979: The cellular structure of narrow cold-frontal rainbands. Quart. J. Roy. Meteor. Soc, 105 , 723727.

    • Search Google Scholar
    • Export Citation
  • James, P. K., and K. A. Browning, 1979: Mesoscale structure of line convection at surface cold fronts. Quart. J. Roy. Meteor. Soc, 105 , 371382.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Phys, 59 , 83104.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and D. Waldvogel, 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 153–156.

  • Koch, S. E., and J. McCarthy, 1982: The evolution of an Oklahoma dryline: Part II: Boundary-layer forcing of mesoconvective systems. J. Atmos. Sci, 39 , 237257.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1959: The band structure of the atmosphere. Tellus, 11 , 267294.

  • Leise, J. A., 1982: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL-82, 11 pp. [Available from NOAA ERL, 325 Broadway, Boulder, CO 80303.].

  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci, 30 , 10771091.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughn, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol, 3 , 146161.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and R. M. Wakimoto, 1999: The interaction of a Pacific cold front with shallow air masses east of the Rocky Mountains. Mon. Wea. Rev, 127 , 21022127.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., H-M. Juang, K-S. Zhang, and S-T. Soong, 1982: Possible triggering mechanisms for severe storms in SESAME-AVE IV (9–10 May 1979). Bull. Amer. Meteor. Soc, 63 , 503515.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev, 119 , 12421258.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal–dryline merger. Mon. Wea. Rev, 128 , 38243838.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and M. D. Albright, 1997: Frontal structure in the interior of an intense mature ocean cyclone. Wea. Forecasting, 12 , 866876.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along drylines. J. Appl. Meteor, 5 , 5863.

  • Schaefer, J. T., 1974: The lifecycle of the dryline. J. Appl. Meteor, 13 , 444449.

  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Shapiro, M. A., T. Hampel, D. Rotzoll, and F. Mosher, 1985: The frontal hydraulic head: A micro-α scale (∼1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev, 113 , 11661183.

    • Search Google Scholar
    • Export Citation
  • Shaw, B. L., R. A. Pielke, and C. L. Ziegler, 1997: A three-dimensional numerical simulation of a Great Plains dryline. Mon. Wea. Rev, 125 , 14891506.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1997: Gravity Currents in the Environment and the Laboratory. Cambridge University Press, 244 pp.

  • Wakimoto, R. M., W-C. Lee, H. B. Bluestein, C-H. Liu, and P. H. Hildebrand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc, 77 , 14651481.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev, 125 , 505526.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP 2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo-dual Doppler analysis of a dryline-outflow boundary intersection. Mon. Wea. Rev, 130 , 12071226.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev, 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol, 11 , 11841206.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., and R. H. Johnson, 1984: Meso- and microscale features of a Colorado cold front. J. Appl. Meteor, 23 , 13151325.

  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev, 121 , 11341151.

  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci, 52 , 273285.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 218 71 3
PDF Downloads 112 50 1