Finescale Radar Observations of the 22 May 2002 Dryline during the International H2O Project (IHOP)

Christopher C. Weiss Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by Christopher C. Weiss in
Current site
Google Scholar
PubMed
Close
,
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
, and
Andrew L. Pazmany ProSensing, Inc., Amherst, Massachussetts

Search for other papers by Andrew L. Pazmany in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dryline has long been associated with the development of severe thunderstorms in the southern plains during the spring and early summer months. The propagation and structure of the dryline are closely tied to surface processes that are neither well understood nor well resolved with current observational capabilities. As a result, there are often large errors in forecasts of dryline position and structure.

Improvements in radar technology have allowed for better observations of the dryline in recent years. Here, very finescale radar observations taken with the University of Massachusetts—Amherst (UMass) mobile W-band radar during an International H2O Project (IHOP) double-dryline event on 22 May 2002 in the Oklahoma panhandle are presented. The observations are placed in the context of the dryline secondary circulation, which describes flow in a plane normal to the dryline. The narrow, half-power beamwidth of the antenna on the W band (0.18°) permitted the measurements of channels of upward (8–9 m s−1 over a horizontal distance of 50–100 m) and downward vertical velocity, greater in absolute magnitude than that previously reported in dryline field studies.

A ground-based variational pseudo-multiple-Doppler processing technique is introduced, which is used to decompose time series of RHI velocity data into horizontal and vertical wind components. The technique is applied to a retrograding dryline from 22 May 2002. Finescale structure of the retreating dryline interface is presented.

Corresponding author address: Dr. Christopher C. Weiss, Texas Tech University—Atmospheric Science Group, Box 42101, Lubbock, TX 79409. Email: Chris.Weiss@ttu.edu

Abstract

The dryline has long been associated with the development of severe thunderstorms in the southern plains during the spring and early summer months. The propagation and structure of the dryline are closely tied to surface processes that are neither well understood nor well resolved with current observational capabilities. As a result, there are often large errors in forecasts of dryline position and structure.

Improvements in radar technology have allowed for better observations of the dryline in recent years. Here, very finescale radar observations taken with the University of Massachusetts—Amherst (UMass) mobile W-band radar during an International H2O Project (IHOP) double-dryline event on 22 May 2002 in the Oklahoma panhandle are presented. The observations are placed in the context of the dryline secondary circulation, which describes flow in a plane normal to the dryline. The narrow, half-power beamwidth of the antenna on the W band (0.18°) permitted the measurements of channels of upward (8–9 m s−1 over a horizontal distance of 50–100 m) and downward vertical velocity, greater in absolute magnitude than that previously reported in dryline field studies.

A ground-based variational pseudo-multiple-Doppler processing technique is introduced, which is used to decompose time series of RHI velocity data into horizontal and vertical wind components. The technique is applied to a retrograding dryline from 22 May 2002. Finescale structure of the retreating dryline interface is presented.

Corresponding author address: Dr. Christopher C. Weiss, Texas Tech University—Atmospheric Science Group, Box 42101, Lubbock, TX 79409. Email: Chris.Weiss@ttu.edu

Save
  • Achtemeier, G. L., 1991: The use of insects as tracers for “clear-air” boundary-layer studies by Doppler radar. J. Atmos. Oceanic Technol, 8 , 746765.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y-H. Kuo, S. G. Benjamin, and Y-F. Li, 1982: The evolution of the mesoscale environment of severe local storms: Preliminary modeling results. Mon. Wea. Rev, 110 , 11851213.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev, 126 , 525550.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storms environment. Part I: Three-dimensional simulations. Mon. Wea. Rev, 114 , 307329.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and J. Guynes, 2000: A new tool for atmospheric research. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 277–280.

  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc, 81 , 29392952.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis. Mon. Wea. Rev, 131 , 29542967.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, Doppler radar observations. Mon. Wea. Rev, 132 , 23252337.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and H. B. Bluestein, 1997: Characteristics of dryline passage. Mon. Wea. Rev, 125 , 463477.

  • Danielsen, E., 1974: The relationship between severe weather, major duststorms, and rapid large-scale cyclogenesis. Subsynoptic Extratropical Weather Systems, Part I, M. Shapiro, Ed., National Center for Atmospheric Research, 215–241.

    • Search Google Scholar
    • Export Citation
  • Doswell III, C. A., 1976: Subsynoptic scale dynamics as revealed by use of filtered surface data. NOAA Tech. Memo. ERL NSSL-79, 40 pp.

  • Dowell, D. C., and H. B. Bluestein, 2002: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev, 130 , 26262648.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1958: Structure and movement of a dry front. Bull. Amer. Meteor. Soc, 39 , 574582.

  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev, 127 , 21282142.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2005: The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J. Atmos. Oceanic Technol, 22 , 225246.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by airborne Doppler radar. Mon. Wea. Rev, 134 , 151271.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., 2000: A numerical simulation of dryline sensitivity to soil moisture. Mon. Wea. Rev, 128 , 28162834.

  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc, 74 , 21332145.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev, 125 , 231251.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., M. E. Baldwin, H. B. Bluestein, T. M. Crawford, and R. M. Rabin, 2001: A case study of severe storm development along a dryline within a synoptically active environment. Part I: Dryline motion and an Eta Model forecast. Mon. Wea. Rev, 129 , 21832204.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., R. M. Rabin, T. M. Crawford, H. B. Bluestein, and M. E. Baldwin, 2002: A case study of severe storm development along a dryline within a synoptically active environment. Part II: Multiple boundaries and convective initiation. Mon. Wea. Rev, 130 , 900920.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc, 77 , 213232.

    • Search Google Scholar
    • Export Citation
  • Jones, P. A., and P. R. Bannon, 2002: A mixed-layer model of the diurnal dryline. J. Atmos. Sci, 59 , 25822593.

  • Martin, W. J., 2003: Measurements and modeling of the Great Plains low-level jet. Ph.D. dissertation, University of Oklahoma, 242 pp. [Available online at ftp://caps.ou.edu/wmartin.].

  • McCarthy, J., and S. E. Koch, 1982: The evolution of an Oklahoma dryline. Part I: A meso- and subsynoptic-scale analysis. J. Atmos. Sci, 39 , 225236.

    • Search Google Scholar
    • Export Citation
  • National Severe Storms Project (NSSP) Staff Members, 1963: Environmental and thunderstorm structures as shown by National Severe Storms Project observations in spring 1960 and 1961. Mon. Wea. Rev, 91 , 271292.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and Y-L. Chen, 1977: A life history of an intense mesoscale convective storm in Oklahoma. J. Atmos. Sci, 34 , 14581476.

  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The finescale structure of a west Texas dryline. Mon. Wea. Rev, 119 , 12831292.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., and L. J. Wicker, 2000: The influence of topography and lower-tropospheric winds on dryline morphology. Mon. Wea. Rev, 128 , 21652189.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., and D. Zrnic, 1980: Subsynoptic-scale vertical wind revealed by dual Doppler radar and VAD analysis. J. Atmos. Sci, 37 , 644654.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1970: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev, 98 , 875883.

  • Schaefer, J. T., 1974: The life cycle of the dryline. J. Appl. Meteor, 13 , 444449.

  • Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc, 95 , 758765.

  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol, 13 , 921936.

    • Search Google Scholar
    • Export Citation
  • Sun, W. Y., and Y. Ogura, 1979: Boundary layer forcing as a possible trigger to a squall line formation. J. Atmos. Sci, 36 , 235254.

  • Sun, W. Y., and C. C. Wu, 1992: Formation and diurnal variation of the dryline. J. Atmos. Sci, 49 , 16061619.

  • UCAR/ATD, 2002: International H2O Project (IHOP_2002): Operations plan. 160 pp. [Available online at http://www.atd.ucar.edu/dir_off/projects/2002/IHOPdocs/opsplan.doc.].

  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and H. B. Bluestein, 2002: Airborne pseudo-dual Doppler analysis of a dryline-outflow boundary intersection. Mon. Wea. Rev, 130 , 12071226.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms by radar-observed boundary layer convergence lines. Mon. Wea. Rev, 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. M. Straka, E. N. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol, 14 , 15021512.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev, 121 , 11341151.

  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci, 52 , 263285.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 64 1
PDF Downloads 71 36 2