Four-Dimensional Variational Assimilation of Water Vapor Differential Absorption Lidar Data: The First Case Study within IHOP_2002

Volker Wulfmeyer Institut für Physik und Meteorologie, Universität Hohenheim, Stuttgart, Germany

Search for other papers by Volker Wulfmeyer in
Current site
Google Scholar
PubMed
Close
,
Hans-Stefan Bauer Institut für Physik und Meteorologie, Universität Hohenheim, Stuttgart, Germany

Search for other papers by Hans-Stefan Bauer in
Current site
Google Scholar
PubMed
Close
,
Matthias Grzeschik Institut für Physik und Meteorologie, Universität Hohenheim, Stuttgart, Germany

Search for other papers by Matthias Grzeschik in
Current site
Google Scholar
PubMed
Close
,
Andreas Behrendt Institut für Physik und Meteorologie, Universität Hohenheim, Stuttgart, Germany

Search for other papers by Andreas Behrendt in
Current site
Google Scholar
PubMed
Close
,
Francois Vandenberghe Research Applications Program, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Francois Vandenberghe in
Current site
Google Scholar
PubMed
Close
,
Edward V. Browell Atmospheric Sciences Division, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Edward V. Browell in
Current site
Google Scholar
PubMed
Close
,
Syed Ismail Atmospheric Sciences Division, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Syed Ismail in
Current site
Google Scholar
PubMed
Close
, and
Richard A. Ferrare Atmospheric Sciences Division, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Richard A. Ferrare in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Four-dimensional variational assimilation of water vapor differential absorption lidar (DIAL) data has been applied for investigating their impact on the initial water field for mesoscale weather forecasting. A case that was observed during the International H2O Project (IHOP_2002) has been selected. During 24 May 2002, data from the NASA Lidar Atmospheric Sensing Experiment were available upstream of a convective system that formed later along the dryline and a cold front. Tools were developed for routinely assimilating water vapor DIAL data into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The results demonstrate a large impact on the initial water vapor field. This is due to the high resolution and accuracy of DIAL data making the observation of the high spatial variability of humidity in the region of the dryline and of the cold front possible. The water vapor field is mainly adjusted by a modification of the atmospheric wind field changing the moisture transport. A positive impact of the improved initial fields on the spatial/temporal prediction of convective initiation is visible. The results demonstrate the high value of accurate, vertically resolved mesoscale water vapor observations and advanced data assimilation systems for short-range weather forecasting.

Corresponding author address: Volker Wulfmeyer, Institut für Physik und Meteorologie, Universität Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany. Email: wulfmeye@uni-hohenheim.de

Abstract

Four-dimensional variational assimilation of water vapor differential absorption lidar (DIAL) data has been applied for investigating their impact on the initial water field for mesoscale weather forecasting. A case that was observed during the International H2O Project (IHOP_2002) has been selected. During 24 May 2002, data from the NASA Lidar Atmospheric Sensing Experiment were available upstream of a convective system that formed later along the dryline and a cold front. Tools were developed for routinely assimilating water vapor DIAL data into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The results demonstrate a large impact on the initial water vapor field. This is due to the high resolution and accuracy of DIAL data making the observation of the high spatial variability of humidity in the region of the dryline and of the cold front possible. The water vapor field is mainly adjusted by a modification of the atmospheric wind field changing the moisture transport. A positive impact of the improved initial fields on the spatial/temporal prediction of convective initiation is visible. The results demonstrate the high value of accurate, vertically resolved mesoscale water vapor observations and advanced data assimilation systems for short-range weather forecasting.

Corresponding author address: Volker Wulfmeyer, Institut für Physik und Meteorologie, Universität Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany. Email: wulfmeye@uni-hohenheim.de

Save
  • Ansmann, A., and J. Bösenberg, 1987: Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere. Appl. Opt, 26 , 30263032.

    • Search Google Scholar
    • Export Citation
  • Arnaud, P., C. Bouvier, L. Cisneros, and R. Dominguez, 2002: Influence of rainfall spatial variability on flood prediction. J. Hydrol, 260 , 216230.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y-R. Guo, and Q. Xiao, 2004: A three-dimensional variational (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev, 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Bauer, H., H-S. Bauer, V. Wulfmeyer, M. Wirth, B. Mayer, G. Ehret, D. Summa, and P. Di Girolamo, 2004: End-to-end simulation of the performance of WALES: Forward module. Proc. 22d Int. Laser Radar Conf., ESA SP-561, Matera, Italy, ESA, 1011–1014.

  • Bösenberg, J., 1998: Ground-based differential absorption lidar for water-vapor profiling: Methodology. Appl. Opt, 37 , 38453860.

  • Bougeault, P., and Coauthors, 2001: The MAP Special Observing Period. Bull. Amer. Meteor. Soc, 82 , 433462.

  • Browell, E. V., and S. Ismail, 1995: First lidar measurements of water vapor and aerosols from a high-altitude aircraft. Proc. OSA Optical Remote Sensing of the Atmosphere, Salt Lake City, UT, OSA, 212–214.

  • Browell, E. V., T. D. Wilkerson, and T. J. McIlrath, 1979: Water vapor differential absorption lidar development and evaluation. Appl. Opt, 18 , 34743483.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 1997: LASE validation experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Spinger-Verlag, 289–295.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., S. Ismail, and W. B. Grant, 1998: Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys, 67B , 399410.

    • Search Google Scholar
    • Export Citation
  • Chen, J-P., and D. Lamb, 1994: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model. J. Atmos. Sci, 51 , 26132630.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and F. Carr, 2000: Summary of the 1998 workshop on mesoscale model verification. Bull. Amer. Meteor. Soc, 81 , 809819.

  • Di Girolamo, P., and Coauthors, 2004: Simulation of the performance of WALES based on an end-to-end model. Proc. 22d Int. Laser Radar Conf., ESA SP-561, Matera, Italy, ESA, 957–960.

  • Doms, G., A. Gassmann, E. Heise, M. Raschendorfer, C. Schraff, and R. Schrodin, 2002: Parameterization issues in the non-hydrostatic NWP-model LM. Proc. Seminar on Key Issues in the Parameterization of Subgrid Physical Processes, Reading, United Kingdom, ECMWF, 205–252.

  • Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecast. Bull. Amer. Meteor. Soc, 84 , 481492.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and R. Sharman, 2004: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon. Wea. Rev, 132 , 23082324.

    • Search Google Scholar
    • Export Citation
  • Fritsch, M., and R. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc, 85 , 955965.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev, 134 , 251271.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO, 80307.].

  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev, 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Ismail, S., and E. V. Browell, 1989: Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis. Appl. Opt, 28 , 36033614.

    • Search Google Scholar
    • Export Citation
  • Joiner, J., and A. M. Da Silva, 1998: Efficient methods to assimilate remotely sensed data based on information content. Quart. J. Roy. Meteor. Soc, 124A , 16691694.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor, 43 , 170181.

  • Kamineni, R., T. N. Krishnamurti, R. A. Ferrare, S. Ismail, and E. V. Browell, 2003: Impact of high resolution water vapor cross-sectional data on hurricane forecasting. Geophys. Res. Lett, 30 .1234, doi:10.1029/2002GL016741.

    • Search Google Scholar
    • Export Citation
  • Kamineni, R., T. N. Krishnamurti, S. Pattnaik, E. V. Browell, S. Ismail, and R. A. Ferrare, 2006: Impact of CAMEX-4 datasets for hurricane forecasts using a global model. J. Atmos. Sci, 63 , 151174.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D., V. Wulfmeyer, and C. Senff, 2000: Measuring second- through fourth-order moments in noisy data. J. Atmos. Oceanic Technol, 17 , 13301347.

    • Search Google Scholar
    • Export Citation
  • Martin, W. J., and M. Xue, 2006: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Wea. Rev, 134 , 192207.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc, 83 , 407430.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated k-model for the longwave. J. Geophys. Res, 102 , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Moore Jr, A. S., and Coauthors, 1996: Development of the Lidar Atmospheric Sensing Experiment (LASE)—An advanced airborne DIAL instrument. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Spinger-Verlag, 281–288.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center's spectral statistical–interpolation analysis system. Mon. Wea. Rev, 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Ruggiero, F. H., G. D. Modica, T. Nehrkorn, M. Cerniglia, J. Michalakes, and X. Zou, 2001: Development of an MM5-based four dimensional variational analysis system for distributed memory multiprocessor computers. Preprints, HPCMP 2001 User's Group Conf., Biloxi, MS, U.S. Naval Oceanographic Office.

  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev, 118 , 12501277.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor, 33 , 416434.

  • Wakimoto, R. M., H. V. Murphey, E. V. Browell, and S. Ismail, 2006: The “triple point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE analyses of the frontal boundaries and convection initiation. Mon. Wea. Rev, 134 , 231250.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc, 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999: Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and radar–RASS. J. Atmos. Sci, 56 , 10551076.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and J. Bösenberg, 1998: Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution, and meteorological applications. Appl. Opt, 37 , 38253844.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and C. Walther, 2001a: Future performance of ground-based and airborne water vapor differential absorption lidar. I: Overview and theory. Appl. Opt, 40 , 53045320.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and C. Walther, 2001b: Future performance of ground-based and airborne water vapor differential absorption lidar. II: Simulations of the precision of a near-infrared, high-power system. Appl. Opt, 40 , 53215336.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., H-S. Bauer, A. Behrendt, F. Vandenberghe, and E. V. Browell, 2004: Assimilation of DIAL data in mesoscale models: An impact study during IHOP_2002. Proc. 22d Int. Laser Radar Conf., ESA SP-561, Matera, Italy, ESA, 639–642.

  • Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev, 128 , 22522269.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006a: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev, 134 , 149171.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006b: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev, 134 , 172191.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2004a: The sensitivity of simulated orographic precipitation to model components other than cloud microphysics. Quart. J. Roy. Meteor. Soc, 130 , 18571875.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2004b: Numerical simulations of the 12–13 August 2002 flooding event in eastern Germany. Quart. J. Roy. Meteor. Soc, 130 , 19211940.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Y-H. Kuo, and Y-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev, 123 , 22292249.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 135 4
PDF Downloads 187 28 3