• Belo Pereira, M., , and L. Berre, 2006: The use of an ensemble approach to study the background error covariances in a global NWP model. Mon. Wea. Rev., 134 , 24662489.

    • Search Google Scholar
    • Export Citation
  • Belo Pereira, M., , L. Berre, , and G. Desroziers, 2002: Estimation et étude des covariances d’erreur de prévision d’ARPEGE/ALADIN (Estimation and study of ARPEGE/ALADIN background error covariances). Proc. Ateliers de Modélisation de l’Atmosphère (AMA), Toulouse, France, Météo-France, 17–20.

  • Bouttier, F., 2002: Strategies for kilometric-scale LAM data assimilation. HIRLAM Workshop on Variational Data Assimilation and Remote Sensing, Helsinki, Finland, Finnish Meteorological Institute, 9–17.

  • Brožkova, R., and Coauthors, 2001: DFI blending: An alternative tool for preparation of the initial conditions for LAM. PWPR Rep. Series, No. 31, Section 1, WMO TD-1064, 7–8.

  • Bubnová, R., , A. Horányi, , and S. Malardel, 1993: International project ARPEGE/ALADIN. EWGLAM Newsletter, No. 22, Institut Royal Meteorologique de Belgique, Brussels, Belgium, 117–130.

  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131 , 10131043.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., , and D. P. Dee, 1988: Observability of discretized partial differential equations. Siam. J. Numer. Anal., 25 , 586617.

  • Courtier, P., , and J-F. Geleyn, 1988: A global numerical weather prediction model with variable resolution: Application to the shallow water equations. Quart. J. Roy. Meteor. Soc., 114 , 13211346.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., , C. Freydier, , J-F. Geleyn, , F. Rabier, , and M. Rochas, 1991: The ARPEGE project at Météo-France. Proc. Workshop on Numerical Methods in Atmospheric Modelling, Vol. 2, Reading, United Kingdom, ECMWF, 193–231.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 460 pp.

  • Daley, R., , and R. Ménard, 1993: Spectral characteristics of Kalman filter systems for atmospheric data assimilation. Mon. Wea. Rev., 121 , 15541565.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102 , 405418.

  • Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., , D. J. Stensrud, , and K. D. Raeder, 2001: Estimation of the error distributions of precipitation produced by convective parametrization schemes. Quart. J. Roy. Meteor. Soc., 127 , 24952512.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., 2003: Background error covariance modelling. Proc. Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 45–63.

  • Gustafsson, N., , P. Lönnberg, , and J. Pailleux, 1997: Data assimilation for high resolution limited area models. J. Meteor. Soc. Japan, 75 , 367382.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , L. Lefaivre, , J. Derome, , H. Ritchie, , and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124 , 12251242.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., , and X-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120 , 10191034.

  • Lynch, P., , D. Giard, , and V. Ivanovici, 1997: Improving the efficiency of a digital filtering scheme for diabatic initialization. Mon. Wea. Rev., 125 , 19761982.

    • Search Google Scholar
    • Export Citation
  • Radnóti, G., and Coauthors, 1995: The spectral limited area model ARPEGE-ALADIN. PWPR Rep. Series, No. 7, WMO TD-699.

  • Sadiki, W., , and C. Fischer, 2005: A posteriori validation applied to the 3D-Var ARPEGE and ALADIN data assimilation systems. Tellus, 57A , 2134.

    • Search Google Scholar
    • Export Citation
  • Sadiki, W., , C. Fischer, , and J-F. Geleyn, 2000: Mesoscale background error covariances: Recent results obtained with the limited area model ALADIN over Morocco. Mon. Wea. Rev., 128 , 39273935.

    • Search Google Scholar
    • Export Citation
  • Veersé, F., , and J-N. Thépaut, 1998: Multiple-truncation incremental approach for four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 124 , 18891908.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 5
PDF Downloads 3 3 2

The Evolution of Dispersion Spectra and the Evaluation of Model Differences in an Ensemble Estimation of Error Statistics for a Limited-Area Analysis

View More View Less
  • 1 National Meteorological Administration, LMDCC, Bucharest, Romania
  • | 2 Météo-France, CNRM/GAME-GMAP, Toulouse, France
  • | 3 Instituto de Meteorologia, DOV/CMAR, Lisbon, Portugal
© Get Permissions
Restricted access

Abstract

An ensemble of limited-area forecasts has been obtained by integrating the Aire Limitée Adaptation Dynamique Développement International (ALADIN) limited-area model, in cold-starting mode, from an ensemble of Action de Recherche Petite Echelle Grande Echelle (ARPEGE) global analyses and forecasts. This permits error covariances of the ALADIN 6-h forecast and of the ARPEGE analysis to be estimated. These two fields may be combined in a future ALADIN analysis.

The evolution of dispersion spectra is first studied in a perfect model framework. The ARPEGE analysis reduces the large-scale dispersion of the ARPEGE background by extracting some information from observations. Then, the digital filter initialization reduces the small-scale dispersion by removing the noise caused by interpolation of the ARPEGE analysis onto the ALADIN grid. Finally, the ALADIN 6-h forecast strongly increases the small-scale dispersion, in accordance with its ability to represent small-scale processes.

Some model error contributions are then studied. The variances of the differences between the ALADIN and ARPEGE forecasts, which are started from the same ARPEGE analysis, are of smaller scale than are the ALADIN and ARPEGE perfect model dispersions. The small-scale part of these ARPEGE–ALADIN model differences is shown to correspond to structures that are represented by ALADIN and not by ARPEGE. Therefore, this part may be added to the ARPEGE analysis dispersion. The residual large-scale part is more ambiguous, but it may be added to the ALADIN dispersion; this may reflect some effects of the coupling inaccuracies, and strengthen (in a future ALADIN analysis) the use of the large-scale information from the ARPEGE analysis.

Corresponding author address: Simona Ecaterina Ştefănescu, National Meteorological Administration, LMDCC, 97 Şos. Bucureşti-Ploieşti, Sector 1, 013686 Bucharest, Romania. Email: simona.stefanescu@meteo.inmh.ro

Abstract

An ensemble of limited-area forecasts has been obtained by integrating the Aire Limitée Adaptation Dynamique Développement International (ALADIN) limited-area model, in cold-starting mode, from an ensemble of Action de Recherche Petite Echelle Grande Echelle (ARPEGE) global analyses and forecasts. This permits error covariances of the ALADIN 6-h forecast and of the ARPEGE analysis to be estimated. These two fields may be combined in a future ALADIN analysis.

The evolution of dispersion spectra is first studied in a perfect model framework. The ARPEGE analysis reduces the large-scale dispersion of the ARPEGE background by extracting some information from observations. Then, the digital filter initialization reduces the small-scale dispersion by removing the noise caused by interpolation of the ARPEGE analysis onto the ALADIN grid. Finally, the ALADIN 6-h forecast strongly increases the small-scale dispersion, in accordance with its ability to represent small-scale processes.

Some model error contributions are then studied. The variances of the differences between the ALADIN and ARPEGE forecasts, which are started from the same ARPEGE analysis, are of smaller scale than are the ALADIN and ARPEGE perfect model dispersions. The small-scale part of these ARPEGE–ALADIN model differences is shown to correspond to structures that are represented by ALADIN and not by ARPEGE. Therefore, this part may be added to the ARPEGE analysis dispersion. The residual large-scale part is more ambiguous, but it may be added to the ALADIN dispersion; this may reflect some effects of the coupling inaccuracies, and strengthen (in a future ALADIN analysis) the use of the large-scale information from the ARPEGE analysis.

Corresponding author address: Simona Ecaterina Ştefănescu, National Meteorological Administration, LMDCC, 97 Şos. Bucureşti-Ploieşti, Sector 1, 013686 Bucharest, Romania. Email: simona.stefanescu@meteo.inmh.ro

Save