• Badger, J., , and B. J. Hoskins, 2001: Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58 , 3849.

  • Barnett, S., , and R. Cameron, 1985: Introduction to Mathematical Control Theory. Clarendon Press, 404 pp.

  • Bengtsson, L., 1980: On the use of a time sequence of surface pressures in 4D data assimilation. Tellus, 32 , 189197.

  • Bishop, C. H., , and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56 , 17481765.

  • Buizza, R., , and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52 , 14341456.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , and A. Montani, 1999: Targeting observations using singular vectors. J. Atmos. Sci., 56 , 29652985.

  • Cardinali, C., , and R. Buizza, 2003: Forecast skill of targeted observations: A singular-vector based diagnostic. J. Atmos. Sci., 60 , 19271940.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4 , 135162.

  • Courtier, P., , J-N. Thépaut, , and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124 , 17831807.

    • Search Google Scholar
    • Export Citation
  • Daescu, D. N., , and I. M. Navon, 2004: Adaptive observations in the context of 4d-var data assimilation. Meteor. Atmos. Phys., 85 , 205226.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., , and C. H. Bishop, 1994: Eady edge waves and rapid development. J. Atmos. Sci., 51 , 19301946.

  • Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., , and S. Ivanov, 2001: Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Quart. J. Roy. Meteor. Soc., 127 , 14331452.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99C , 1014310162.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39 , 16631686.

  • Farrell, B. F., 1984: Modal and non-modal baroclinic waves. J. Atmos. Sci., 41 , 668673.

  • Farrell, B. F., 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46 , 11931206.

  • Gong, J. J., , G. Wahba, , D. R. Johnson, , and J. Tribbia, 1998: Adaptive tuning of numerical weather prediction models: Simultaneous estimation of weighting, smoothing, and physical parameters. Mon. Wea. Rev., 126 , 210231.

    • Search Google Scholar
    • Export Citation
  • Heifetz, E., , C. Bishop, , B. Hoskins, , and J. Methven, 2004: The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basic. Quart. J. Roy. Meteor. Soc., 130 , 211231.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Järvinen, H., , E. Andersson, , and F. Bouttier, 1999: Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus, 51A , 469488.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., 2003: Information content of observations in variational data assimilation. Ph.D. thesis, University of Reading, 210 pp.

  • Johnson, C., , B. J. Hoskins, , and N. K. Nichols, 2005a: A singular vector perspective of 4d-var: Filtering and interpolation. Quart. J. Roy. Meteor. Soc., 131 , 120.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., , N. K. Nichols, , and B. J. Hoskins, 2005b: Very large inverse problems in atmosphere and ocean modelling. Int. J. Numer. Method Fluids, 47 , 759771.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., 2005: Observation impact during the North Atlantic TReC—2003. Mon. Wea. Rev., 133 , 22972309.

  • Le Dimet, F., , and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A , 97110.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112 , 11771194.

  • Lorenc, A. C., 2003a: Modelling of error covariances by 4d-var data assimilation. Quart. J. Roy. Meteor. Soc., 129 , 31673182.

  • Lorenc, A. C., 2003b: The potential of the ensemble Kalman filter for NWP—A comparison with 4d-var. Quart. J. Roy. Meteor. Soc., 129 , 31833203.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1996: Predictability of the atmospheres and oceans: From days to decades. ECMWF Seminar Proceedings on Predictability, Vol. 1, ECMWF, 83–141.

  • Pires, C., , R. Vautard, , and O. Talagrand, 1996: On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus, 48A , 96121.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , and P. Courtier, 1992: Four-dimensional assimilation in the presence of baroclinic instability. Quart. J. Roy. Meteor. Soc., 118 , 649672.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , E. Klinker, , P. Courtier, , and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122 , 121150.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., , H. Järvinen, , E. Klinker, , J. F. Mahfouf, , and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., 1996: Summary of an informal workshop on adaptive observations and FASTEX. Bull. Amer. Meteor. Soc., 77 , 953961.

  • Swanson, K., , and R. Vautard, 1998: Four-dimensional variational assimilation and predictability in a quasi-geostrophic model. Tellus, 50A , 369390.

    • Search Google Scholar
    • Export Citation
  • Thépaut, J-N., , P. Courtier, , G. Belaud, , and G. Lemaître, 1996: Dynamical structure functions in 4D variational assimilation: A case study. Quart. J. Roy. Meteor. Soc., 122 , 535561.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., , J. L. Anderson, , C. H. Bishop, , T. M. Hamill, , and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., , and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 1
PDF Downloads 1 1 0

A Singular Vector Perspective of 4DVAR: The Spatial Structure and Evolution of Baroclinic Weather Systems

View More View Less
  • 1 University of Reading, Reading, United Kingdom
  • | 2 Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.

Corresponding author address: Dr. Christine Johnson, Met Office, FitzRoy Rd., Exeter EX1 3PB, United Kingdom. Email: christine.johnson@metoffice.gov.uk

Abstract

The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.

Corresponding author address: Dr. Christine Johnson, Met Office, FitzRoy Rd., Exeter EX1 3PB, United Kingdom. Email: christine.johnson@metoffice.gov.uk

Save