• Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54 , 703724.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , J. F. Gamache, , F. D. Marks Jr., , C. E. Samsury, , and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., , and M. L. Black, 1989: Temporal and spatial variations of rainfall near the centers of two tropical cyclones. Mon. Wea. Rev., 117 , 22042218.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60 , 366376.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical wind shear on tropical cyclone intensity change. J. Atmos. Sci., 53 , 20762087.

  • DeMaria, M., , and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9 , 209220.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • Desflots, M., , and S. S. Chen, 2004: A numerical study of rapid intensity change in Hurricane Lili (2002). Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 574–575.

  • Dunion, J. P., , and C. S. Velden, 2004: The impact of the Sahara air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353365.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, Washington, DC, 46 pp.

  • Elsberry, R. L., , and R. A. Jefferies, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124 , 13741387.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45 , 11431155.

  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics. J. Atmos. Sci., 54 , 10141026.

  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev., 105 , 11191135.

  • Frank, W. M., , and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of environmental flow on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Hogan, T., , and T. Rosmond, 1991: The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119 , 17861815.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192541.

  • Jarvinen, B. R., , C. J. Neumann, , and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC-22, 21 pp. [Available from NTIS, Technology Administration, U.S. Dept. of Commerce, Springfield, VA 22161.].

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc., 126 , 31373160.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126 , 31613185.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61 , 114119.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Knaff, J. A., , J. P. Kossin, , and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18 , 204223.

  • Knaff, J. A., , S. A. Seseske, , M. DeMaria, , and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132 , 25032510.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., , C. R. Sampson, , and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20 , 688699.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., , F. D. Marks Jr., , and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132 , 16451660.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marks, F. D., , R. A. Houze Jr., , and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45 , 16781687.

  • Miller, B. I., 1958: Rainfall rates in Florida hurricanes. Mon. Wea. Rev., 86 , 258264.

  • Peng, M. S., , and R. T. Williams, 1990: Dynamics of vortex asymmetries and their influence on vortex motion on a beta plane. J. Atmos. Sci., 47 , 19872003.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., , B-F. Jeng, , and R. T. Williams, 1999: A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect. J. Atmos. Sci., 56 , 14041423.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , S. Chang, , and H. F. Pierce, 1994: A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones. J. Appl. Meteor., 33 , 129139.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , S. S. Chen, , J. Tenerelli, , and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131 , 15771599.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40 , 19841998.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 348 57
PDF Downloads 328 328 58

Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 3 NOAA/AOML/Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

Vertical wind shear and storm motion are two of the most important factors contributing to rainfall asymmetries in tropical cyclones (TCs). Global TC rainfall structure, in terms of azimuthal distribution and asymmetries relative to storm motion, has been previously described using the Tropical Rainfall Measuring Mission Microwave Imager rainfall estimates. The mean TC rainfall distribution and the wavenumber-1 asymmetry vary with storm intensity and geographical location among the six oceanic basins. This study uses a similar approach to investigate the relationship between the structure of TC rainfall and the environmental flow by computing the rainfall asymmetry relative to the vertical wind shear. The environmental vertical wind shear is defined as the difference between the mean wind vectors of the 200- and 850-hPa levels over an outer region extending from the radius of 200–800 km around the storm center. The wavenumber-1 maximum rainfall asymmetry is downshear left (right) in the Northern (Southern) Hemisphere. The rainfall asymmetry decreases (increases) with storm intensity (shear strength). The rainfall asymmetry maximum is predominantly downshear left for shear values > 7.5 m s−1. Large asymmetries are usually observed away from the TC centers. As TC intensity increases, the asymmetry maximum shifts upwind to the left. The analysis is further extended to examine the storm motion and the vertical wind shear and their collective effects on TC rainfall asymmetries. It is found that the vertical wind shear is a dominant factor for the rainfall asymmetry when shear is >5 m s−1. The storm motion–relative rainfall asymmetry in the outer rainband region is comparable to that of shear relative when the shear is <5 m s−1, suggesting that TC translation speed becomes an important factor in the low shear environment. The overall TC rainfall asymmetry depends on the juxtaposition and relative magnitude of the storm motion and environmental shear vectors in all oceanic basins.

Corresponding author address: Dr. Shuyi S. Chen, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: schen@rsmas.miami.edu

Abstract

Vertical wind shear and storm motion are two of the most important factors contributing to rainfall asymmetries in tropical cyclones (TCs). Global TC rainfall structure, in terms of azimuthal distribution and asymmetries relative to storm motion, has been previously described using the Tropical Rainfall Measuring Mission Microwave Imager rainfall estimates. The mean TC rainfall distribution and the wavenumber-1 asymmetry vary with storm intensity and geographical location among the six oceanic basins. This study uses a similar approach to investigate the relationship between the structure of TC rainfall and the environmental flow by computing the rainfall asymmetry relative to the vertical wind shear. The environmental vertical wind shear is defined as the difference between the mean wind vectors of the 200- and 850-hPa levels over an outer region extending from the radius of 200–800 km around the storm center. The wavenumber-1 maximum rainfall asymmetry is downshear left (right) in the Northern (Southern) Hemisphere. The rainfall asymmetry decreases (increases) with storm intensity (shear strength). The rainfall asymmetry maximum is predominantly downshear left for shear values > 7.5 m s−1. Large asymmetries are usually observed away from the TC centers. As TC intensity increases, the asymmetry maximum shifts upwind to the left. The analysis is further extended to examine the storm motion and the vertical wind shear and their collective effects on TC rainfall asymmetries. It is found that the vertical wind shear is a dominant factor for the rainfall asymmetry when shear is >5 m s−1. The storm motion–relative rainfall asymmetry in the outer rainband region is comparable to that of shear relative when the shear is <5 m s−1, suggesting that TC translation speed becomes an important factor in the low shear environment. The overall TC rainfall asymmetry depends on the juxtaposition and relative magnitude of the storm motion and environmental shear vectors in all oceanic basins.

Corresponding author address: Dr. Shuyi S. Chen, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: schen@rsmas.miami.edu

Save