• Betts, A. K., , and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column test using GATE wave, BOMEX, and arctic air-masses data sets. Quart. J. Roy. Meteor. Soc., 112 , 13061335.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9 , 256278.

  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. II, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 953 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101 , 72517268.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123 , 25772610.

    • Search Google Scholar
    • Export Citation
  • Dallavalle, J. P., , and L. F. Bosart, 1975: A synoptic investigation of anticyclogenesis accompanying North American polar air outbreaks. Mon. Wea. Rev., 103 , 941957.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., , and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32 , 14751488.

    • Search Google Scholar
    • Export Citation
  • Fortune, M. A., , and V. E. Kousky, 1983: Two severe freezes in Brazil: Precursors and synoptic evolution. Mon. Wea. Rev., 111 , 181196.

    • Search Google Scholar
    • Export Citation
  • Gan, M. A., , and V. B. Rao, 1994: The influence of the Andes Cordillera on transient disturbances. Mon. Wea. Rev., 122 , 11411157.

  • Garreaud, R. D., 1999: Cold air incursions over subtropical and tropical South America. A numerical case study. Mon. Wea. Rev., 127 , 28232853.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128 , 25442559.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and J. Rutllant, 2003: Coastal lows along the subtropical west coast of South America: Numerical simulation of a typical case. Mon. Wea. Rev., 131 , 891908.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , J. Rutllant, , and H. Fuenzalida, 2002: Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Mon. Wea. Rev., 130 , 7588.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Hamilton, G. M., , and R. J. Tarifa, 1978: Synoptic aspects of a polar outbreak leading to frost in tropical Brazil, July 1972. Mon. Wea. Rev., 106 , 15451556.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1979: Forward–backward scheme modified to prevent two-grid-interval noise and its application in sigma coordinate models. Contrib. Atmos. Phys., 52 , 6984.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Konrad, Ch E., , and S. J. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117 , 26872700.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., , and J. E. Hansen, 1974: A parameterization of the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31 , 118133.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., , A. Cornejo, , P. Satyamurty, , C. Nobre, , and W. Sea, 1997: Cold surges in tropical and extratropical South America: The strong event in June 1994. Mon. Wea. Rev., 125 , 27592786.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., , and M. D. Albright, 1987: Coastal southerlies and alongshore surges of the west coast of North America: Evidences of mesoscale topographically trapped response to synoptic forcing. Mon. Wea. Rev., 115 , 17071738.

    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., , and J. L. McBride, 1993: Australian southerly busters. Part I: Analysis of a numerically simulated case study. Mon. Wea. Rev., 121 , 19041920.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models. Riv. Meteor. Aeronaut., 44 , 195202.

  • Mesinger, F., , and T. L. Black, 1992: On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteor. Atmos. Phys., 50 , 4760.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R., , and R. Garreaud, 2005: Dynamics of the low-level jet off the subtropical west coast of South America. Mon. Wea. Rev., 133 , 36613677.

    • Search Google Scholar
    • Export Citation
  • Norte, F. A., 1988: Características del viento Zonda en la Región de Cuyo (Characteristics of the zonda wind in the Cuyo region). Ph.D. thesis, Ciudad University, Buenos Aires, Argentina, 224 pp.

  • Nuss, W., and Coauthors, 2000: Coastally trapped wind reversals: Progress toward understanding. Bull. Amer. Meteor. Soc., 81 , 719743.

    • Search Google Scholar
    • Export Citation
  • Ogaz, P., , and H. Fuenzalida, 1981: Acerca de un paso frontal y sus manifestaciones en el litoral árido del norte de Chile. Tralka, 2 , 1938.

    • Search Google Scholar
    • Export Citation
  • Reason, C., , and R. M. Jury, 1990: On the generation and propagation of the southern Africa coastal lows. Quart. J. Roy. Meteor. Soc., 116 , 11331151.

    • Search Google Scholar
    • Export Citation
  • Rutllant, J., , and R. Garreaud, 2004: Episodes of strong flow down the western slope of the subtropical Andes. Mon. Wea. Rev., 132 , 611622.

    • Search Google Scholar
    • Export Citation
  • Satyamurty, P., , R. Pinheiro Dos Santos, , and M. A. Maringolo Lemes, 1980: On the stationary trough generated by the Andes. Mon. Wea. Rev., 108 , 510520.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , W. E. Bracken, , L. F. Bosart, , G. J. Hakim, , M. A. Bedrick, , M. J. Dickinson, , and K. R. Tyle, 1997: The 1993 Superstorm cold surge: Frontal structure, gap flow, and tropical impact. Mon. Wea. Rev., 125 , 539.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., , and J. A. Marengo, 2000: Tropical–midlatitude exchange of air masses during summer and winter in South America: Climatic aspects and examples of intense events. Int. J. Climatol., 20 , 11671190.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., , and S. C. Chou, 2001: Evaluation of two Eta Model versions for weather forecast over South America. Geofis. Int., 40 , 219237.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., , V. Y. Serafini, , and H. Le Treut, 1998: The impact of the Andes on transient atmospheric systems: A comparison between observations and GCM results. Mon. Wea. Rev., 126 .895–912.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., , F. A. Norte, , P. Satyamurty, , and S. C. Chou, 2003a: Analysis of three situations of the foehn effect over the Andes (zonda wind) using the Eta–CPTEC regional model. Wea. Forecasting, 18 , 481501.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., , A. C. Saulo, , M. Nicolini, , and P. Satyamurty, 2003b: The northwestern Argentinean low: A study of two typical events. Mon. Wea. Rev., 131 , 23612378.

    • Search Google Scholar
    • Export Citation
  • Vera, C. S., , and P. Vigliarolo, 2000: A diagnostic study of cold-air outbreaks over South America. Mon. Wea. Rev., 128 , 324.

  • Zhao, Q., , and F. H. Carr, 1997: A prognostic cloud scheme for operational NWP models. Mon. Wea. Rev., 125 , 19311953.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 6
PDF Downloads 17 17 3

Influence of the Subtropical Andes on Baroclinic Disturbances: A Cold Front Case Study

View More View Less
  • 1 Centro de Previsão de Tempo e Estudos Climáticos–INPE, São Paulo, Brazil
  • | 2 Department of Geophysics, Universidad de Chile, Santiago, Chile
  • | 3 Programa Regional de Meteorología, Instituto Argentino de Nivología y Glaciología (IANIGLA)–CONICET, Mendoza, Argentina
  • | 4 Centro de Investigaciones del Mar y la Atmósfera–CONICET, and Departamento de Ciencias de la Atmósfera y los Océanos, Universidad de Buenos Aires, Buenos Aires, Argentina
© Get Permissions
Restricted access

Abstract

The Andes Cordillera produces a significant disruption to the structure and evolution of the weather systems that cross South America. In particular, cold fronts tend to be “channeled” to the north immediately to the east of the Andes, fostering the advance of cold air incursions (cold surges) well into subtropical, and sometimes tropical, latitudes. In contrast, active cold fronts hardly reach subtropical latitudes along the western side of the Andes (Pacific sea border). Instead, as a cold front moves equatorward along the east side of the Andes, a marked low-level warming tends to appear along the west side of the subtropical Andes, leading to the formation of a mesoscale coastal low (or trough) in this region. To further understand the processes that lead to a contrasting evolution of the cold front at each side of the Andes, a typical frontal passage is studied in this work, using synoptic observations and a regional model [Eta–Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)] simulation.

The passage of the postfrontal anticyclone over southern South America produces a poleward-pointing pressure gradient and, hence, geostrophic easterly flow at low levels. The tall and steep mountains block the flow, leading to a very small zonal wind component close to the slopes. Convergence (divergence) of the zonal flow to the east (west) of the subtropical Andes is largely compensated for by upward (downward) motion, and the associated cooling (warming) over this region. The weak zonal wind component near the Andes also breaks down the geostrophic balance over this region, giving rise to an acceleration of the southerly winds (i.e., along-barrier flow) and the consequent increase in cold advection. Therefore, to the east of the subtropical Andes both horizontal and vertical advection cool the lower troposphere, fostering the equatorward propagation of the cold front. To the west of the Andes, horizontal advection is largely offset by the strong warming associated with the enhanced subsidence over that region hindering the advance of the cold front into subtropical latitudes.

Corresponding author address: Dr. René Garreaud, P.O. Box 025285, Miami, FL 33102-5285. Email: rgarreau@dgf.uchile.cl

Abstract

The Andes Cordillera produces a significant disruption to the structure and evolution of the weather systems that cross South America. In particular, cold fronts tend to be “channeled” to the north immediately to the east of the Andes, fostering the advance of cold air incursions (cold surges) well into subtropical, and sometimes tropical, latitudes. In contrast, active cold fronts hardly reach subtropical latitudes along the western side of the Andes (Pacific sea border). Instead, as a cold front moves equatorward along the east side of the Andes, a marked low-level warming tends to appear along the west side of the subtropical Andes, leading to the formation of a mesoscale coastal low (or trough) in this region. To further understand the processes that lead to a contrasting evolution of the cold front at each side of the Andes, a typical frontal passage is studied in this work, using synoptic observations and a regional model [Eta–Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)] simulation.

The passage of the postfrontal anticyclone over southern South America produces a poleward-pointing pressure gradient and, hence, geostrophic easterly flow at low levels. The tall and steep mountains block the flow, leading to a very small zonal wind component close to the slopes. Convergence (divergence) of the zonal flow to the east (west) of the subtropical Andes is largely compensated for by upward (downward) motion, and the associated cooling (warming) over this region. The weak zonal wind component near the Andes also breaks down the geostrophic balance over this region, giving rise to an acceleration of the southerly winds (i.e., along-barrier flow) and the consequent increase in cold advection. Therefore, to the east of the subtropical Andes both horizontal and vertical advection cool the lower troposphere, fostering the equatorward propagation of the cold front. To the west of the Andes, horizontal advection is largely offset by the strong warming associated with the enhanced subsidence over that region hindering the advance of the cold front into subtropical latitudes.

Corresponding author address: Dr. René Garreaud, P.O. Box 025285, Miami, FL 33102-5285. Email: rgarreau@dgf.uchile.cl

Save