• Black, M. L., , J. F. Gamache, , F. D. Marks Jr., , C. E. Samsury, , and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical wind shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., , and M. L. Black, 1989: Temporal and spatial variations of rainfall near the centers of two tropical cyclones. Mon. Wea. Rev., 117 , 22042218.

    • Search Google Scholar
    • Export Citation
  • Case, R. A., 1986: Atlantic hurricane season of 1985. Mon. Wea. Rev., 114 , 13901405.

  • Chen, Y., , and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60 , 22942312.

  • Chen, Y., , G. Brunet, , and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60 , 12391256.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., 2005: The structure and evolution of a hurricane in vertical wind shear. Ph.D. thesis, University at Albany, State University of New York, 148 pp.

  • Corbosiero, K. L., , J. Molinari, , and M. L. Black, 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133 , 29052921.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., , S. J. Lord, , S. E. Feuer, , and F. D. Marks Jr., 1993: The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121 , 24332451.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., , and W. H. Schubert, 1993: Hurricane spiral rainbands. J. Atmos. Sci., 50 , 33803403.

  • Jones, S. C., 1995: The evolution of vortices in shear: I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

  • Knaff, J. A., , J. P. Kossin, , and M. DeMaria, 2003: Annular hurricanes. Wea. Forecasting, 18 , 204223.

  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58 , 21962209.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel. Bull. Amer. Meteor. Soc., 85 , 151153.

  • Kossin, J. P., , W. H. Schubert, , and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary region of enhanced vorticity. J. Atmos. Sci., 57 , 38933917.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , B. D. McNoldy, , and W. H. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130 , 31443149.

  • Kossin, J. P., , W. H. Schubert, , C. Velden, , M. Black, , P. Black, , R. Zehr, , S. Aberson, , and J. Dunion, 2004: Mesovortices in Hurricane Isabel (2003). Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 447–448.

  • Kuo, H-C., , R. T. Williams, , and J-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56 , 16591673.

    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1932: Hydrodynamics. Dover, 732 pp.

  • MacDonald, N. J., 1968: The evidence for the existence of Rossby-type waves in the hurricane vortex. Tellus, 20 , 138150.

  • Mallen, K. J., , M. T. Montgomery, , and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62 , 408425.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., , L. P. Graves, , and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97 , 275309.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130 , 18661881.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , H. D. Snell, , and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58 , 421435.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1986: The structure of polygonal eye of a typhoon. J. Meteor. Soc. Japan, 64 , 913921.

  • Nolan, D. S., , M. T. Montgomery, , and L. D. Grasso, 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58 , 32433270.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58 , 23062330.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , F. D. Marks Jr., , and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61 , 322.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , S. Chen, , J. Tenerelli, , and H. E. Willoughby, 2003: A numerical study of the impact of vertical wind shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131 , 15771599.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Senn, H. V., , and H. W. Hiser, 1959: On the origin of hurricane spiral rain bands. J. Meteor., 16 , 419426.

  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Swarztrauber, P. N., 1982: Vectorizing the FFTs. Parallel Computations, G. Rodrigue, Ed., Academic Press, 51–83.

  • Tuttle, J. D., , and B. Gall, 1995: Radar analysis of Hurricanes Andrew and Hugo. Preprints, 21st Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 608–610.

  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129 , 13701394.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical wind shear. J. Atmos. Sci., 53 , 33133332.

  • Willoughby, H. E., , and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110 , 12981305.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , F. D. Marks Jr., , and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41 , 31893211.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 21
PDF Downloads 45 45 14

The Structure and Evolution of Hurricane Elena (1985). Part II: Convective Asymmetries and Evidence for Vortex Rossby Waves

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York
  • | 2 NOAA/AOML/Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

A portable data recorder attached to the Weather Surveillance Radar-1957 (WSR-57) in Apalachicola, Florida, collected 313 radar scans of the reflectivity structure within 150 km of the center of Hurricane Elena (in 1985) between 1310 and 2130 UTC 1 September. This high temporal and spatial (750 m) resolution dataset was used to examine the evolution of the symmetric and asymmetric precipitation structure in Elena as the storm rapidly strengthened and attained maximum intensity. Fourier decomposition of the reflectivity data into azimuthal wavenumbers revealed that the power in the symmetric (wavenumber 0) component dominated the reflectivity pattern at all times and all radii by at least a factor of 2. The wavenumber 1 asymmetry accounted for less than 20% of the power in the reflectivity field on average and was found to be forced by the environmental vertical wind shear.

The small-amplitude wavenumber 2 asymmetry in the core was associated with the appearance and rotation of an elliptical eyewall. This structure was visible for nearly 2 h and was noted to rotate cyclonically at a speed equal to half of the local tangential wind. Outside of the eyewall, individual peaks in the power in wavenumber 2 were associated with repeated instances of cyclonically rotating, outward-propagating inner spiral rainbands. Four separate convective bands were identified with an average azimuthal velocity of 25 m s−1, or ∼68% of the local tangential wind speed, and an outward radial velocity of 5.2 m s−1. The azimuthal propagation speeds of the elliptical eyewall and inner spiral rainbands were consistent with vortex Rossby wave theory.

The elliptical eyewall and inner spiral rainbands were seen only in the 6-h period prior to peak intensity, when rapid spinup of the vortex had produced an annular vorticity profile, similar to those that have been shown to support barotropic instability. The appearance of an elliptical eyewall was consistent with the breakdown of eyewall vorticity into mesovortices, asymmetric mixing between the eye and eyewall, and a slowing of the intensification rate. The inner spiral rainbands might have arisen from high eyewall vorticity ejected from the core during the mixing process. Alternatively, because the bands were noted to emanate from the vertical shear-forced deep convection in the northern eyewall, they could have formed through the axisymmetrization of the asymmetric diabatically generated eyewall vorticity.

* Current affiliation: National Center for Atmospheric Research, Boulder, Colorado. The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Kristen Corbosiero, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: corbosie@ucar.edu

Abstract

A portable data recorder attached to the Weather Surveillance Radar-1957 (WSR-57) in Apalachicola, Florida, collected 313 radar scans of the reflectivity structure within 150 km of the center of Hurricane Elena (in 1985) between 1310 and 2130 UTC 1 September. This high temporal and spatial (750 m) resolution dataset was used to examine the evolution of the symmetric and asymmetric precipitation structure in Elena as the storm rapidly strengthened and attained maximum intensity. Fourier decomposition of the reflectivity data into azimuthal wavenumbers revealed that the power in the symmetric (wavenumber 0) component dominated the reflectivity pattern at all times and all radii by at least a factor of 2. The wavenumber 1 asymmetry accounted for less than 20% of the power in the reflectivity field on average and was found to be forced by the environmental vertical wind shear.

The small-amplitude wavenumber 2 asymmetry in the core was associated with the appearance and rotation of an elliptical eyewall. This structure was visible for nearly 2 h and was noted to rotate cyclonically at a speed equal to half of the local tangential wind. Outside of the eyewall, individual peaks in the power in wavenumber 2 were associated with repeated instances of cyclonically rotating, outward-propagating inner spiral rainbands. Four separate convective bands were identified with an average azimuthal velocity of 25 m s−1, or ∼68% of the local tangential wind speed, and an outward radial velocity of 5.2 m s−1. The azimuthal propagation speeds of the elliptical eyewall and inner spiral rainbands were consistent with vortex Rossby wave theory.

The elliptical eyewall and inner spiral rainbands were seen only in the 6-h period prior to peak intensity, when rapid spinup of the vortex had produced an annular vorticity profile, similar to those that have been shown to support barotropic instability. The appearance of an elliptical eyewall was consistent with the breakdown of eyewall vorticity into mesovortices, asymmetric mixing between the eye and eyewall, and a slowing of the intensification rate. The inner spiral rainbands might have arisen from high eyewall vorticity ejected from the core during the mixing process. Alternatively, because the bands were noted to emanate from the vertical shear-forced deep convection in the northern eyewall, they could have formed through the axisymmetrization of the asymmetric diabatically generated eyewall vorticity.

* Current affiliation: National Center for Atmospheric Research, Boulder, Colorado. The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Kristen Corbosiero, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: corbosie@ucar.edu

Save