The Role of Forcing in Cell Morphology and Evolution within Midlatitude Squall Lines

Brian F. Jewett Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Brian F. Jewett in
Current site
Google Scholar
PubMed
Close
and
Robert B. Wilhelmson Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert B. Wilhelmson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study assesses the role of mesoscale forcing on cell morphology and early evolution of midlatitude squall lines. The forcing chosen was a cold front, simulated to frontal collapse to produce a specific set of thermodynamic profiles at the leading edge of the front. Use of a realistic, balanced, and persistent forced state allowed a unique evaluation of its importance in thunderstorm evolution compared with a traditional homogeneous environment without forcing. Three-dimensional squall lines were modeled with and without the front present, in low and high bulk Richardson number environments. The forced convection evolved in significantly different ways than their isolated, unforced counterparts. In low-shear conditions, the line of isolated convective cells split, with the adjacent split cells interfering destructively with neighboring cells in the line. With forcing present, differences in anticyclonic cell intensity and propagation prevented this interaction from occurring, leading to longer-lived cyclonic convection despite a near-normal orientation between cloud-bearing shear and the convective line. The split-cell interaction also failed to occur under higher-shear conditions due to anticyclonic cell decay given the greater cyclonic hodograph curvature. In both low- and higher-shear environments, a strong bias toward cyclonic storms was noted with forcing present, due to shallower anticyclonic cells with the front present and to preexisting vorticity in the environment; updraft–vorticity correlations were skewed accordingly. Forcing also reduced the sensitivity of the evolving convection to detailed aspects of the initialization.

Corresponding author address: Brian F. Jewett, Department of Atmospheric Sciences, 105 S. Gregory St., Urbana, IL 61801. Email: bjewett@uiuc.edu

Abstract

This study assesses the role of mesoscale forcing on cell morphology and early evolution of midlatitude squall lines. The forcing chosen was a cold front, simulated to frontal collapse to produce a specific set of thermodynamic profiles at the leading edge of the front. Use of a realistic, balanced, and persistent forced state allowed a unique evaluation of its importance in thunderstorm evolution compared with a traditional homogeneous environment without forcing. Three-dimensional squall lines were modeled with and without the front present, in low and high bulk Richardson number environments. The forced convection evolved in significantly different ways than their isolated, unforced counterparts. In low-shear conditions, the line of isolated convective cells split, with the adjacent split cells interfering destructively with neighboring cells in the line. With forcing present, differences in anticyclonic cell intensity and propagation prevented this interaction from occurring, leading to longer-lived cyclonic convection despite a near-normal orientation between cloud-bearing shear and the convective line. The split-cell interaction also failed to occur under higher-shear conditions due to anticyclonic cell decay given the greater cyclonic hodograph curvature. In both low- and higher-shear environments, a strong bias toward cyclonic storms was noted with forcing present, due to shallower anticyclonic cells with the front present and to preexisting vorticity in the environment; updraft–vorticity correlations were skewed accordingly. Forcing also reduced the sensitivity of the evolving convection to detailed aspects of the initialization.

Corresponding author address: Brian F. Jewett, Department of Atmospheric Sciences, 105 S. Gregory St., Urbana, IL 61801. Email: bjewett@uiuc.edu

Save
  • Balachandran, N. K., 1980: Gravity waves from thunderstorms. Mon. Wea. Rev., 108 , 804816.

  • Bénard, P., J-P. LaFore, and J-L. Redelsperger, 1992: Nonhydrostatic simulation of frontogenesis in a moist atmosphere. Part I: General description and narrow rainbands. J. Atmos. Sci., 49 , 22002217.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42 , 17111732.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. S. Parker, 1993: Modes of isolated, severe convective storm formation along the dryline. Mon. Wea. Rev., 121 , 13541372.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. L. Weisman, 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128 , 31283149.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and R. G. Fleagle, 1985: Structure of a cold front over the ocean. Quart. J. Roy. Meteor. Soc., 111 , 739759.

  • Braun, S. A., R. A. Houze Jr., and B. F. Smull, 1997: Airborne dual-Doppler observations of an intense frontal system approaching the Pacific Northwest coast. Mon. Wea. Rev., 125 , 31313156.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. A. Maddox, 1992: On the use of mesoscale and cloud-scale models in operational forecasting. Wea. Forecasting, 7 , 120132.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. B. Wilhelmson, 1994: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122 , 126136.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., 2002: Vertical wind shear associated with left moving supercells. Wea. Forecasting, 17 , 845855.

  • Crook, N. A., 1987: Moist convection at a surface cold front. J. Atmos. Sci., 44 , 34693494.

  • Crook, N. A., 1996: Sensitivity of model convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and S. B. Trier, 2002: Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system. Mon. Wea. Rev., 130 , 28392858.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Elmore, K., D. J. Stensrud, and K. C. Crawford, 2002: Explicit cloud-scale models for operational forecasts: A note of caution. Wea. Forecasting, 17 , 873884.

    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., G. M. Barnes, and M. A. LeMone, 1992: Structure of a midlatitude squall line formed in strong unidirectional shear. Mon. Wea. Rev., 120 , 237260.

    • Search Google Scholar
    • Export Citation
  • Gall, R. L., R. T. Williams, and T. L. Clark, 1987: On the minimum scale of surface fronts. J. Atmos. Sci., 44 , 25622574.

  • Garner, S. T., 1989: Fully Lagrangian numerical solutions of unbalanced frontogenesis and frontal collapse. J. Atmos. Sci., 46 , 717739.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130 , 23492372.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and S. Schotz, 1985: Structure and evolution of a severe squall line over Oklahoma. Mon. Wea. Rev., 113 , 15631589.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Elsevier Academic, 529 pp.

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Hsie, E-Y., R. A. Anthes, and D. Keyser, 1984: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci., 41 , 25812594.

    • Search Google Scholar
    • Export Citation
  • Jewett, B. F., R. B. Wilhelmson, and B. D. Lee, 2002: Numerical simulation of cell interaction. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 316–319.

  • Keyser, D., and R. A. Anthes, 1982: The influence of planetary boundary layer physics on frontal structure in the Hoskins–Bretherton horizontal shear model. J. Atmos. Sci., 39 , 17831802.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., J. T. McQueen, and V. M. Karyampudi, 1995: A numerical study of the effects of differential cloud cover on cold frontal structure and dynamics. J. Atmos. Sci., 52 , 937964.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., R. D. Farley, and M. R. Hjelmfelt, 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci., 48 , 23502366.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., B. F. Jewett, and R. B. Wilhelmson, 2006a: The 19 April 1996 Illinois tornado outbreak. Part I: Cell evolution and supercell isolation. Wea. Forecasting, 21 , 433448.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., B. F. Jewett, and R. B. Wilhelmson, 2006b: The 19 April 1996 Illinois tornado outbreak. Part II: Cell mergers and associated tornado incidence. Wea. Forecasting,, 21 , 449464.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116 , 779798.

  • Lindzen, R. S., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117 , 25752583.

  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998a: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13 , 852859.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, E. N. Rasmussen, and D. O. Blanchard, 1998b: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126 , 29592971.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129 , 664687.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and K. K. Droegemeier, 1991: Numerical predictability experiments of the 20 May 1977 Del City, OK supercell storm. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 734–738.

  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9 , 327347.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127 , 24552464.

    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8 , 132146.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and I. M. Held, 1989: Nonlinear equilibration of two-dimensional eady waves. J. Atmos. Sci., 46 , 30553064.

  • Ogura, O., and D. Portis, 1982: Structure of the cold front observed Hoskins–Bretherton frontogenesis model. J. Atmos. Sci., 39 , 27732792.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., B. Ross, L. Polinsky, and R. Shaginaw, 1985: Advances in the theory of atmospheric fronts. Advances in Geophysics, Vol. 28, Academic Press, 223–252.

  • Pecnick, M. J., and D. Keyser, 1989: The effect of spatial resolution on the simulation of upper-tropospheric frontogenesis using a sigma-coordinate primitive-equation model. Meteor. Atmos. Phys., 40 , 137149.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Persson, P. O. G., and T. T. Warner, 1991: Model generation of spurious gravity waves due to inconsistency of the vertical and horizontal resolution. Mon. Wea. Rev., 119 , 917935.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126 , 24062421.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128 , 174191.

    • Search Google Scholar
    • Export Citation
  • Reeder, M. J., and R. K. Smith, 1986: A comparison between frontogenesis in the two-dimensional Eady model of baroclinic instability and summertime cold fronts in the Australian region. Quart. J. Roy. Meteor. Soc., 112 , 293313.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18 , 562584.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110 , 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45 , 463485.

  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12 , 542552.

  • Shapiro, M. A., T. Hampel, D. Rotzoll, and F. Mosher, 1985: The frontal hydraulic head: A micro-α (∼1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113 , 11661183.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. Oliger, and R. L. Street, 1989: Adaptive grid refinement for numerical weather prediction. J. Comput. Phys., 80 , 2760.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51 , 25632584.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. J. Reeder, 1988: On the movement and low-level structure of cold fronts. Mon. Wea. Rev., 116 , 19271944.

  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50 , 31943212.

    • Search Google Scholar
    • Export Citation
  • Stalker, J. R., and K. R. Knupp, 2003: Cell merger potential in multicell thunderstorms of weakly sheared environments: Cell separation distance versus planetary boundary layer depth. Mon. Wea. Rev., 131 , 16781695.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. M. Fritsch, 1991: Incorporating mesoscale convective outflows in mesoscale model initial conditions. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 798–801.

  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15 , 682699.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131 , 28042823.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and B. L. Bosart, 2000: Airborne radar observations of a cold front during FASTEX. Mon. Wea. Rev., 128 , 24472470.

  • Weaver, J. F., and S. P. Nelson, 1982: Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development. Mon. Wea. Rev., 110 , 707718.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50 , 645670.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131 , 27792803.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61 , 361382.

  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45 , 19902013.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., M. S. Gilmore, and L. J. Wicker, 1998: The impact of convective storms on their local environment: What is an appropriate ambient sounding? Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 238–241.

  • Westcott, N. E., 1994: Merging of convective clouds: Cloud initiation, bridging, and subsequent growth. Mon. Wea. Rev., 122 , 780790.

  • Westcott, N. E., and P. C. Kennedy, 1989: Cell development and merger in an Illinois thunderstorm observed by Doppler radar. J. Atmos. Sci., 46 , 117131.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52 , 26752703.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and J. B. Klemp, 1983: Numerical simulation of severe storms within lines. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 231–234.

  • Williams, R. T., 1967: Atmospheric frontogenesis: A numerical experiment. J. Atmos. Sci., 24 , 627641.

  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms by radar-observed boundary layer convergence lines. Mon. Wea. Rev., 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125 , 15071525.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and J. M. Fritsch, 1986: A case study of the sensitivity of numerical simulation of mesoscale convective systems to varying initial conditions. Mon. Wea. Rev., 114 , 24182431.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and H-R. Cho, 1995: Three-dimensional simulation of frontal rainbands and conditional symmetric instability in the Eady-wave model. Tellus, 47A , 4561.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3736 3070 126
PDF Downloads 223 79 10