NOGAPS-ALPHA Simulations of the 2002 Southern Hemisphere Stratospheric Major Warming

Douglas R. Allen Remote Sensing Division, Naval Research Laboratory, Washington, D.C

Search for other papers by Douglas R. Allen in
Current site
Google Scholar
PubMed
Close
,
Lawrence Coy E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C

Search for other papers by Lawrence Coy in
Current site
Google Scholar
PubMed
Close
,
Stephen D. Eckermann E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C

Search for other papers by Stephen D. Eckermann in
Current site
Google Scholar
PubMed
Close
,
John P. McCormack E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C

Search for other papers by John P. McCormack in
Current site
Google Scholar
PubMed
Close
,
Gloria L. Manney Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, and New Mexico Highlands University, Las Vegas, New Mexico

Search for other papers by Gloria L. Manney in
Current site
Google Scholar
PubMed
Close
,
Timothy F. Hogan Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Timothy F. Hogan in
Current site
Google Scholar
PubMed
Close
, and
Young-Joon Kim Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Young-Joon Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A high-altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model is used to simulate the unusual September 2002 Southern Hemisphere stratospheric major warming. Designated as NOGAPS-Advanced Level Physics and High Altitude (NOGAPS-ALPHA), this model extends from the surface to 0.005 hPa (∼85 km altitude) and includes modifications to multiple components of the operational NOGAPS system, including a new radiative heating scheme, middle-atmosphere gravity wave drag parameterizations, hybrid vertical coordinate, upper-level meteorological initialization, and radiatively active prognostic ozone with parameterized photochemistry. NOGAPS-ALPHA forecasts (hindcasts) out to 6 days capture the main features of the major warming, such as the zonal mean wind reversal, planetary-scale wave amplification, large upward Eliassen–Palm (EP) fluxes, and splitting of the polar vortex in the middle stratosphere. Forecasts beyond 6 days have reduced upward EP flux in the lower stratosphere, reduced amplitude of zonal wavenumbers 2 and 3, and a middle stratospheric vortex that does not split. Three-dimensional EP-flux diagnostics in the troposphere reveal that the longer forecasts underestimate upward-propagating planetary wave energy emanating from a significant blocking pattern over the South Atlantic that played a large role in forcing the major warming. Forecasts of less than 6 days are initialized with the blocking in place, and therefore are not required to predict the blocking onset. For a more thorough skill assessment, NOGAPS-ALPHA forecasts over 3 weeks during September–October 2002 are compared with operational NOGAPS 5-day forecasts made at the time. NOGAPS-ALPHA forecasts initialized with 2002 operational NOGAPS analyses show a modest improvement in skill over the NOGAPS operational forecasts. An additional, larger improvement is obtained when NOGAPS-ALPHA is initialized with reanalyzed 2002 fields produced with the currently operational (as of October 2003) Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS). Thus the combination of higher model top, better physical parameterizations, and better initial conditions all yield improved forecasting skill over the NOGAPS forecasts issued operationally at the time.

Corresponding author address: Douglas Allen, Dept. of Physics and Astronomy, Dordt College, 498 Fourth Avenue NE, Sioux Center, IA 51250. Email: dallen@dordt.edu

Abstract

A high-altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model is used to simulate the unusual September 2002 Southern Hemisphere stratospheric major warming. Designated as NOGAPS-Advanced Level Physics and High Altitude (NOGAPS-ALPHA), this model extends from the surface to 0.005 hPa (∼85 km altitude) and includes modifications to multiple components of the operational NOGAPS system, including a new radiative heating scheme, middle-atmosphere gravity wave drag parameterizations, hybrid vertical coordinate, upper-level meteorological initialization, and radiatively active prognostic ozone with parameterized photochemistry. NOGAPS-ALPHA forecasts (hindcasts) out to 6 days capture the main features of the major warming, such as the zonal mean wind reversal, planetary-scale wave amplification, large upward Eliassen–Palm (EP) fluxes, and splitting of the polar vortex in the middle stratosphere. Forecasts beyond 6 days have reduced upward EP flux in the lower stratosphere, reduced amplitude of zonal wavenumbers 2 and 3, and a middle stratospheric vortex that does not split. Three-dimensional EP-flux diagnostics in the troposphere reveal that the longer forecasts underestimate upward-propagating planetary wave energy emanating from a significant blocking pattern over the South Atlantic that played a large role in forcing the major warming. Forecasts of less than 6 days are initialized with the blocking in place, and therefore are not required to predict the blocking onset. For a more thorough skill assessment, NOGAPS-ALPHA forecasts over 3 weeks during September–October 2002 are compared with operational NOGAPS 5-day forecasts made at the time. NOGAPS-ALPHA forecasts initialized with 2002 operational NOGAPS analyses show a modest improvement in skill over the NOGAPS operational forecasts. An additional, larger improvement is obtained when NOGAPS-ALPHA is initialized with reanalyzed 2002 fields produced with the currently operational (as of October 2003) Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS). Thus the combination of higher model top, better physical parameterizations, and better initial conditions all yield improved forecasting skill over the NOGAPS forecasts issued operationally at the time.

Corresponding author address: Douglas Allen, Dept. of Physics and Astronomy, Dordt College, 498 Fourth Avenue NE, Sioux Center, IA 51250. Email: dallen@dordt.edu

Save
  • Allen, D. R., R. M. Bevilacqua, G. E. Nedoluha, C. E. Randall, and G. L. Manney, 2003: Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophys. Res. Lett, 30 .1599, doi:10.1029/2003GL017117.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baker, N. L., T. F. Hogan, W. F. Campbell, R. L. Pauley, and S. D. Swadley, 2005: The impact of AMSU-A radiance assimilation in the U.S. Navy's Operational Global Atmospheric Prediction System (NOGAPS). Naval Research Laboratory Rep. NRL/MR/7530–05-8836, 22 pp.

  • Baldwin, M. P., T. Hirooka, A. O'Neill, and S. Yoden, 2003: Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split. SPARC Newsletter, No. 20, World Climate Research Program, 24–26.

  • Cariolle, D., and M. Déqué, 1986: Southern Hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res, 91 , 1082510846.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res, 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., and M. J. Suarez, 2002: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. 10460, Vol. 15, Technical Report Series on Global Modeling and Data Assimilation, 52 pp.

  • Chou, M-D., M. J. Suarez, X. Z. Liang, and M-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. 104606, Vol. 19, Technical Report Series on Global Modeling and Data Assimilation, 65 pp.

  • Coy, L., D. E. Siskind, S. E. Eckermann, J. P. McCormack, D. R. Allen, and T. F. Hogan, 2005: Modeling the August 2002 minor warming event. Geophys. Res. Lett, 32 .L07808, doi:10.1029/2005GL022400.

    • Search Google Scholar
    • Export Citation
  • Daley, R., and E. Barker, 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev, 129 , 869883.

  • Eckermann, S. D., J. P. McCormack, L. Coy, D. Allen, T. Hogan, and Y-J. Kim, 2004: NOGAPS-ALPHA: A prototype high-altitude global NWP model. Preprints, Symp. on the 50th Anniversary of Operational Numerical Weather Prediction, College Park, MD, Amer. Meteor. Soc., P2.6.

  • Emanuel, K. A., and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci, 56 , 17661782.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., E. H. Barker, and R. Gelaro, 1988: A determination of balanced normal modes for two models. Mon. Wea. Rev, 116 , 27172724.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., S. Chandra, J. J. Barnett, and M. Corney, 1990: Zonal mean temperature, pressure, zonal wind, and geopotential height as functions of latitude, COSPAR International Reference Atmosphere: 1986, Part II: Middle atmosphere models. Adv. Space Res, 10 , 12,. 1159.

    • Search Google Scholar
    • Export Citation
  • Goerss, J., and P. Phoebus, 1992: The Navy's operational atmospheric analysis. Wea. Forecasting, 7 , 232249.

  • Harnik, N., R. K. Scott, and J. Perlwitz, 2005: Wave reflection and focusing prior to the major stratospheric warming of September 2002. J. Atmos. Sci, 62 , 640650.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, and Davies, R., D. Randall, and T. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res, 92 , 10091016.

    • Search Google Scholar
    • Export Citation
  • Harvey, V. L., R. B. Pierce, T. D. Fairlie, and M. H. Hitchman, 2002: A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res, 107 .4442, doi:10.1029/2001JD001471.

    • Search Google Scholar
    • Export Citation
  • Hogan, T., and T. Rosmond, 1991: The description of the Navy Operational Global Atmospheric Prediction System's spectral forecast model. Mon. Wea. Rev, 119 , 17861815.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., T. E. Rosmond, and R. Gelaro, 1991: The NOGAPS forecast model: A technical description. Naval Oceanographic and Atmospheric Research Laboratory Rep. 13, 219 pp.

  • Kim, Y-J., and T. F. Hogan, 2004: Response of a global atmospheric forecast model to various drag parameterizations. Tellus, 56A , 472484.

    • Search Google Scholar
    • Export Citation
  • Krüger, K., B. Naujokat, and K. Labitzke, 2005: The unusual midwinter warming in the Southern Hemisphere stratosphere 2002: A comparison to Northern Hemisphere phenomena. J. Atmos. Sci, 62 , 603613.

    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., 1999: Predictive skill of the UKMO Unified Model in the lower stratosphere. Quart. J. Roy. Meteor. Soc, 125 , 22052238.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor, 17 , 187202.

  • Louis, J. F., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL parameterization at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Parameterizations, Reading, United Kingdom, ECMWF, 59–79.

  • Manney, G. L., J. L. Sabutis, S. Pawson, M. L. Santee, B. Naujokat, R. Swinbank, M. E. Gelman, and W. Ebisuzaki, 2003: Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies. J. Geophys. Res, 108 .8328, doi:10.1029/2001JD001149.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2005a: Simulations of dynamics and transport during the September 2002 Antarctic major warming. J. Atmos. Sci, 62 , 690707.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and Coauthors, 2005b: Diagnostic comparison of meteorological analyses during the 2002 Antarctic winter. Mon. Wea. Rev, 133 , 12611278.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., and Coauthors, 2004: NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign. Atmos. Chem. Phys, 4 , 24012423.

    • Search Google Scholar
    • Export Citation
  • McLinden, C. A., S. C. Olsen, B. Hannegan, O. Wild, M. J. Prather, and J. Sundet, 2000: Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux. J. Geophys. Res, 105 , 1465314665.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., K. Yamazaki, A. Kitoh, and A. Arakawa, 1985: Numerical forecasts of stratospheric warming events during the winter of 1979. Mon. Wea. Rev, 113 , 10151029.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., M. J. Suarez, K. Yamazaki, A. Kitoh, and A. Arakawa, 1986: Numerical forecasts of tropospheric and stratospheric events during the winter of 1979: Sensitivity to the model's horizontal resolution and vertical extent. Advances in Geophysics, Vol. 29, Academic Press, 375–413.

  • Mechoso, C. R., A. O'Neill, V. D. Pope, and J. D. Farrara, 1988: A study of the stratospheric final warming of 1982 in the Southern Hemisphere. Quart. J. Roy. Meteor. Soc, 114 , 13651384.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev, 132 , 17641776.

    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., 1994: The impact of an envelope orography on low-frequency variability and blocking in a low-resolution general circulation model. J. Climate, 7 , 18151826.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and E. R. Nash, 2005: The unusual Southern Hemisphere winter of 2002. J. Atmos. Sci, 62 , 614628.

  • Niishi, K., and H. Nakamura, 2004: The tropospheric origin of the diminished Antarctic ozone hole in September 2002. Geophys. Res. Lett, 31 .L16103, doi:10.1029/2004GL019532.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc, 112 , 10011039.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., J. A. Ridout, and T. F. Hogan, 2004: Recent modifications of the Emanuel convective scheme in the Navy Operational Global Atmospheric Prediction System. Mon. Wea. Rev, 132 , 12541268.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci, 43 , 16571678.

    • Search Google Scholar
    • Export Citation
  • Quiroz, R. S., 1986: The association of stratospheric warming with tropospheric blocking. J. Geophys. Res, 91 , 52775285.

  • Randel, W. J., and Coauthors, 2004: The SPARC intercomparison of middle atmosphere climatologies. J. Climate, 17 , 9861003.

  • Renwick, J. A., and M. J. Revell, 1999: Blocking over the South Pacific and Rossby wave propagation. Mon. Wea. Rev, 127 , 22332247.

  • Riishojgaard, L. P., I. Stajner, and G. P. Lou, 2000: The GEOS ozone data assimilation system. Adv. Space Res, 25 , 10631072.

  • Scaife, A. A., D. R. Jackson, R. Swinbank, N. Butchard, H. E. Thornton, M. Keil, and L. Henderson, 2005: Stratospheric vacillations and the major warming over Antarctica in 2002. J. Atmos. Sci, 62 , 629639.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., M. Hortal, G. Kelly, A. McNally, A. Untch, and S. Uppala, 2005: ECMWF analyses and forecasts of stratospheric winter polar vortex break-up: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci, 62 , 668689.

    • Search Google Scholar
    • Export Citation
  • Sinnhuber, B-M., M. Weber, A. Amankwah, and J. P. Burrows, 2003: Total ozone during the unusual Antarctic winter of 2002. Geophys. Res. Lett, 30 .1581, doi:10.1029/2003GL017086.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme in the ECMWF model. Quart. J. Roy. Meteor. Soc, 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Stajner, I., L. P. Riishojgaard, and R. B. Rood, 2001: The GEOS ozone data assimilation system: Specification of error statistics. Quart. J. Roy. Meteor. Soc, 127 , 10691094.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and D. A. Ortland, 2003: Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) reference atmosphere project. J. Geophys. Res, 108 .4615, doi:10.1029/2002JD003135.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of phase-independent wave-activity flux for stationary and migratory quasi-geostrophic eddies on a zonally varying basic flow. J. Atmos. Sci, 58 , 608627.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and T. Hogan, 2002: Boundary layer clouds in a global atmospheric model: Simple cloud cover parameterization. J. Climate, 15 , 12611276.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A , 343365.

  • Tibaldi, S., E. Tosi, A. Navarra, and L. Pedulli, 1994: Northern and Southern Hemisphere seasonal variability of blocking frequency and predictability. Mon. Wea. Rev, 122 , 19712003.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1984: The sensitivity of the time-scale flow to cumulus convection in the ECMWF model. Proc. Workshop on Large-Scale Numerical Models, Reading, United Kingdom, ECMWF, 297–316.

  • Trenberth, K. E., and K. C. Mo, 1985: Blocking in the Southern Hemisphere. Mon. Wea. Rev, 113 , 321.

  • Trenberth, K. E., and D. P. Stepaniak, 2002: A pathological problem with NCEP reanalyses in the stratosphere. J. Climate, 15 , 690695.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., J. M. Sisson, and D. J. Karoly, 1998: Predictive skill of an NWP system in the southern lower stratosphere. Quart. J. Roy. Meteor. Soc, 124 , 21812200.

    • Search Google Scholar
    • Export Citation
  • Weber, M., S. Dhomse, F. Wittrock, A. Richter, B-M. Sinnhuber, and J. P. Burrows, 2003: Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995–2002. Geophys. Res. Lett, 30 .1583, doi:10.1029/2002GL016799.

    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc, 129 , 19892010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 237 107
PDF Downloads 115 39 11