Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments

Fuqing Zhang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
,
Zhiyong Meng Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Zhiyong Meng in
Current site
Google Scholar
PubMed
Close
, and
Altug Aksoy Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Altug Aksoy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Through observing system simulation experiments, this two-part study exploits the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation. Part I focuses on the performance of the EnKF under the perfect model assumption in which the truth simulation is produced with the same model and same initial uncertainties as those of the ensemble, while Part II explores the impacts of model error and ensemble initiation on the filter performance. In this first part, the EnKF is implemented in a nonhydrostatic mesoscale model [the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)] to assimilate simulated sounding and surface observations derived from simulations of the “surprise” snowstorm of January 2000. This is an explosive East Coast cyclogenesis event with strong error growth at all scales as a result of interactions between convective-, meso-, and subsynoptic-scale dynamics.

It is found that the EnKF is very effective in keeping the analysis close to the truth simulation under the perfect model assumption. The EnKF is most effective in reducing larger-scale errors but less effective in reducing errors at smaller, marginally resolvable scales. In the control experiment, in which the truth simulation was produced with the same model and same initial uncertainties as those of the ensemble, a 24-h continuous EnKF assimilation of sounding and surface observations of typical temporal and spatial resolutions is found to reduce the error by as much as 80% (compared to a 24-h forecast without data assimilation) for both observed and unobserved variables including zonal and meridional winds, temperature, and pressure. However, it is observed to be relatively less efficient in correcting errors in the vertical velocity and moisture fields, which have stronger smaller-scale components. The analysis domain-averaged root-mean-square error after 24-h assimilation is ∼1.0–1.5 m s−1 for winds and ∼1.0 K for temperature, which is comparable to or less than typical observational errors. Various sensitivity experiments demonstrated that the EnKF is quite successful in all realistic observational scenarios tested. However, as will be presented in Part II, the EnKF performance may be significantly degraded if an imperfect forecast model is used, as is likely the case when real observations are assimilated.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: fzhang@tamu.edu

Abstract

Through observing system simulation experiments, this two-part study exploits the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation. Part I focuses on the performance of the EnKF under the perfect model assumption in which the truth simulation is produced with the same model and same initial uncertainties as those of the ensemble, while Part II explores the impacts of model error and ensemble initiation on the filter performance. In this first part, the EnKF is implemented in a nonhydrostatic mesoscale model [the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)] to assimilate simulated sounding and surface observations derived from simulations of the “surprise” snowstorm of January 2000. This is an explosive East Coast cyclogenesis event with strong error growth at all scales as a result of interactions between convective-, meso-, and subsynoptic-scale dynamics.

It is found that the EnKF is very effective in keeping the analysis close to the truth simulation under the perfect model assumption. The EnKF is most effective in reducing larger-scale errors but less effective in reducing errors at smaller, marginally resolvable scales. In the control experiment, in which the truth simulation was produced with the same model and same initial uncertainties as those of the ensemble, a 24-h continuous EnKF assimilation of sounding and surface observations of typical temporal and spatial resolutions is found to reduce the error by as much as 80% (compared to a 24-h forecast without data assimilation) for both observed and unobserved variables including zonal and meridional winds, temperature, and pressure. However, it is observed to be relatively less efficient in correcting errors in the vertical velocity and moisture fields, which have stronger smaller-scale components. The analysis domain-averaged root-mean-square error after 24-h assimilation is ∼1.0–1.5 m s−1 for winds and ∼1.0 K for temperature, which is comparable to or less than typical observational errors. Various sensitivity experiments demonstrated that the EnKF is quite successful in all realistic observational scenarios tested. However, as will be presented in Part II, the EnKF performance may be significantly degraded if an imperfect forecast model is used, as is likely the case when real observations are assimilated.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: fzhang@tamu.edu

Save
  • Aksoy, A., F. Zhang, J. W. Nielsen-Gammon, and C. C. Epifanio, 2005: Ensemble-based data assimilation for thermally-forced circulations. J. Geophys. Res, 110 .D16105, doi:10.1029/JD005728.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev, 129 , 28842903.

  • Barker, D. M., W. Huang, Y-R. Guo, and A. J. Bourgeois, 2003: A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech. Note NCAR/TN-453+STR, 68 pp.

  • Barker, D. M., W. Huang, Y-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev, 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Daley, R., and R. Menard, 1993: Spectral characteristics of Kalman filter systems for atmospheric data assimilation. Mon. Wea. Rev, 121 , 15541565.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev, 132 , 19822005.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev, 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res, 99 , 1014310162.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc, 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter—3D variational analysis scheme. Mon. Wea. Rev, 128 , 29052919.

  • Hamill, T. M., C. Snyder, and R. E. Morss, 2002: Analysis-error statistics of a quasigeostrophic model using three-dimensional variational assimilation. Mon. Wea. Rev, 130 , 27772791.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., C. Snyder, and J. S. Whitaker, 2003: Ensemble forecasts and the properties of flow-dependent analysis-error covariance singular vectors. Mon. Wea. Rev, 131 , 17411758.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev, 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev, 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev, 133 , 604620.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., 2000: Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Wea. Rev, 128 , 19711981.

    • Search Google Scholar
    • Export Citation
  • Keppenne, C. L., and M. M. Rienecker, 2002: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev, 130 , 29512965.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev, 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc, 122 , 73119.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev, 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. M. Hamill, and S. B. Trier, 2003: Linear evolution of error covariances in a quasigeostrophic model. Mon. Wea. Rev, 131 , 189205.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev, 130 , 19131924.

  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev, 132 , 11901200.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev, 133 , 28762893.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev, 130 , 16171632.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci, 60 , 11731185.

  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev, 132 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and J. L. Anderson, 2003: Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus, 55A , 126147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 119 5
PDF Downloads 229 69 3