Sensitivity of High-Resolution Forecasts Using the Adjoint Technique at the 10-km Scale

Cornel Soci National Meteorological Administration, Bucharest, Romania

Search for other papers by Cornel Soci in
Current site
Google Scholar
PubMed
Close
,
Claude Fischer Météo-France, CNRM/GMAP, Toulouse, France

Search for other papers by Claude Fischer in
Current site
Google Scholar
PubMed
Close
, and
András Horányi Hungarian Meteorological Service, Budapest, Hungary

Search for other papers by András Horányi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper provides an experimental framework designed to assess the performance and the evolution of the diabatic Aire Limitée Adaptation Dynamique Développement International (ALADIN) adjoint model at 10-km grid size. Numerical experiments are carried out with the goal of evaluating the adjoint model solutions and the benefit of employing a complex linearized physical parameterization package in the gradient computation. Sensitivity studies with respect to initial conditions at high resolution on real meteorological events are performed. Numerical results obtained in the gradient computations show that, at high resolution, a strong nonlinear flow over complex orography might be a potential source of numerical instability in the absence of a robust dissipative physics employed in the adjoint model. Also, the scheme of the linearized large-scale precipitation is a source of noise in precipitating areas. The results on one particular case suggest that on the one hand the adjoint model is able to capture the dynamically sensitive area, but on the other hand the subsequent sensitivity forecast is more sensitive to the sign and the amplitude of the initial state perturbation rather than the structure of the gradient field.

Corresponding author address: Cornel Soci, National Meteorological Administration, 97, sos. Bucuresti-Ploiesti, 013686 Bucharest, Romania. Email: cornel.soci@meteo.inmh.ro

Abstract

This paper provides an experimental framework designed to assess the performance and the evolution of the diabatic Aire Limitée Adaptation Dynamique Développement International (ALADIN) adjoint model at 10-km grid size. Numerical experiments are carried out with the goal of evaluating the adjoint model solutions and the benefit of employing a complex linearized physical parameterization package in the gradient computation. Sensitivity studies with respect to initial conditions at high resolution on real meteorological events are performed. Numerical results obtained in the gradient computations show that, at high resolution, a strong nonlinear flow over complex orography might be a potential source of numerical instability in the absence of a robust dissipative physics employed in the adjoint model. Also, the scheme of the linearized large-scale precipitation is a source of noise in precipitating areas. The results on one particular case suggest that on the one hand the adjoint model is able to capture the dynamically sensitive area, but on the other hand the subsequent sensitivity forecast is more sensitive to the sign and the amplitude of the initial state perturbation rather than the structure of the gradient field.

Corresponding author address: Cornel Soci, National Meteorological Administration, 97, sos. Bucuresti-Ploiesti, 013686 Bucharest, Romania. Email: cornel.soci@meteo.inmh.ro

Save
  • Berre, L., 2000: Estimation of synoptic and mesoscale forecast error covariances in a limited-area model. Mon. Wea. Rev., 128 , 644667.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A., 1976: Modeling the nocturnal boundary layer. Proc. Third Symp. on Atmospheric Turbulence, Diffusion and Air Quality, Boston, MA, Amer. Meteor. Soc., 46–49.

  • Boer, G., N. McFarlane, R. Laprise, J. Henderson, and J. Blanchet, 1984: The Canadian Climate Center spectral atmospheric general circulation model. Atmos. Ocean Phys., 22 , 397429.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113 , 21082121.

  • Buizza, R., 1994: Sensitivity of optimal unstable perturbation. Quart. J. Roy. Meteor. Soc., 120 , 429451.

  • Courtier, P., C. Freydier, J-F. Geleyn, F. Rabier, and M. Rochas, 1991: The ARPEGE project at Météo-France. Proc. ECMWF Workshop on Numerical Methods in Atmospheric Models, Reading, United Kingdom, ECMWF, 193–231.

  • Davies, H., 1983: Limitations of some common lateral boundary scheme used in NWP models. Mon. Wea. Rev., 111 , 10021012.

  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78 , 25772591.

  • Errico, R. M., and T. Vukicevic, 1992: Sensitivity analysis using an adjoint of the PSU–NCAR Mesoscale Model. Mon. Wea. Rev., 120 , 16441660.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., T. Vukicevic, and K. Raeder, 1993: Comparison of initial and lateral boundary condition sensitivity for a limited-area model. Tellus, 45A , 539557.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J-F., and A. Hollingsworth, 1979: An economical analytical method for the interaction between scattering and line absorbtion of radiation. Contrib. Atmos. Phys., 52 , 116.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J-F., C. Girard, and J-F. Louis, 1982: A simple parameterization of moist convection for large-scale atmospheric model. Beitr. Phys. Atmos., 55 , 325334.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J-F., and Coauthors, 1995: Atmospheric parametrization schemes in Météo-France’s ARPEGE NWP. Proc. 1994 ECMWF Seminar on Physical Parameterizations in Numerical Models. Reading, United Kingdom, ECMWF, 385–402.

  • Gustafsson, N., E. Källén, and S. Thorsteinsson, 1998: Sensitivity of forecast errors to initial and lateral boundary conditions. Tellus, 50A , 167185.

    • Search Google Scholar
    • Export Citation
  • Horányi, A., and A. Joly, 1996: Some aspects of the sensitivity of idealized frontal waves. Beitr. Phys. Atmos., 69 , 517533.

  • Horányi, A., I. Ihász, and G. Radn’oti, 1996: ARPEGE-ALADIN: A numerical weather prediction model for Central-Europe with the participation of the Hungarian Meteorological Service. Idöjárás, 100 , 277301.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., J-N. Thépaut, and J-F. Geleyn, 1999: Simplified and regular physical parameterizations for incremental four-dimensional variational assimilation. Mon. Wea. Rev., 127 , 2645.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations. Tellus, 38A , 97110.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., and J. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A , 309322.

    • Search Google Scholar
    • Export Citation
  • Lewis, J., K. Raeder, and R. M. Errico, 2001: Vapor flux associated with return flow over the Gulf of Mexico: A sensitivity study using adjoint modeling. Tellus, 53A , 7493.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. Miller, 1997: A new sub-grid scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123 , 101127.

    • Search Google Scholar
    • Export Citation
  • Louis, J., M. Tiedtke, and J-F. Geleyn, 1981: A short history of the operational PBL parameterization at ECMWF. Proc. ECMWF Workshop on the Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–80.

  • Lynch, P., D. Giard, and V. Ivanovici, 1997: Improving the efficiency of a digital filtering scheme. Mon. Wea. Rev., 125 , 19761982.

  • Mahfouf, J-F., 1999: Influence of physical processes on the tangent-linear approximation. Tellus, 51A , 147166.

  • Motte, P., and F. Ruiz, 1987: Elaboration d’un ensemble simplifié de parametrisations physiques. Note de travail de l’ENM, Toulouse, France, 58 pp. [Available from Ecole Nationale de la Météorologie, 42, Av. G. Coriolis, 31057 Toulouse Cedex 1, France.].

  • Noilhan, J., and J-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13 , 145159.

  • Piriou, J-M., 1996: A cloud water and cloud diagnostic scheme. Proc. HIRLAM Workshop, Helsinki, Finland, Finnish Meteorological Institute, 72–78.

  • Rabier, F., P. Courtier, M. Hervéou, B. Strauss, and A. Perssones, 1993: Sensitivity of forecast error to initial conditions using the adjoint model no quotation allowed. ECMWF Tech. Memo. 197, 29 pp.

  • Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122 , 121150.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential application in climate simulation. Mon. Wea. Rev., 120 , 303325.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1958: An objective analysis based on the variational method. J. Meteor. Soc. Japan, 36 , 7788.

  • Sasaki, Y., 1970: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 98 , 875883.

  • Široka, M., C. Fischer, V. Cassé, R. Brožkova, and J-F. Geleyn, 2003: The definition of mesoscale selective forecast error covariances for a limited area variational analysis. Meteor. Atmos. Phys., 82 , 227244.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987a: Variational assimilation of meteorological observations with the adjoint vorticity equation. I. Theory. Quart. J. Roy. Meteor. Soc., 113 , 13111328.

    • Search Google Scholar
    • Export Citation
  • Talagrand, O., and P. Courtier, 1987b: Variational assimilation of meteorological observations with the adjoint vorticity equation. II. Numerical results. Quart. J. Roy. Meteor. Soc., 113 , 13291347.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Y-H. Kuo, and S. Low-Nam, 1998: Medium-range prediction of an extratropical oceanic cyclone: Impact of initial state. Mon. Wea. Rev., 126 , 27372763.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 841 727 95
PDF Downloads 76 34 8