The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the SIRTA Atmospheric Observatory

M. Chiriaco Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by M. Chiriaco in
Current site
Google Scholar
PubMed
Close
,
R. Vautard Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by R. Vautard in
Current site
Google Scholar
PubMed
Close
,
H. Chepfer Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by H. Chepfer in
Current site
Google Scholar
PubMed
Close
,
M. Haeffelin Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by M. Haeffelin in
Current site
Google Scholar
PubMed
Close
,
J. Dudhia NCAR, Boulder, Colorado

Search for other papers by J. Dudhia in
Current site
Google Scholar
PubMed
Close
,
Y. Wanherdrick Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by Y. Wanherdrick in
Current site
Google Scholar
PubMed
Close
,
Y. Morille Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Palaiseau, France

Search for other papers by Y. Morille in
Current site
Google Scholar
PubMed
Close
, and
A. Protat Centre d’études des Environnements Terrestre et Planétaires, Institut Pierre Simon Laplace, Velizy, France

Search for other papers by A. Protat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate midlatitude ice clouds is evaluated. Model outputs are compared to long-term meteorological measurements by active (radar and lidar) and passive (infrared and visible fluxes) remote sensing collected at an atmospheric observatory near Paris, France. The goal is to understand which of four microphysical schemes is best suited to simulate midlatitude ice clouds. The methodology consists of simulating instrument observables from the model outputs without any profile inversion, which allows the authors to use fewer assumptions on microphysical and optical properties of ice particles.

Among the four schemes compared in the current study, the best observation-to-simulations scores are obtained with Reisner et al. provided that the particles’ sedimentation velocity from Heymsfield and Donner is used instead of that originally proposed. For this last scheme, the model gives results close to the measurements for clouds with medium optical depth of typically 1 to 3, whatever the season. In this configuration, MM5 simulates the presence of midlatitude ice clouds in more than 65% of the authors’ selection of observed cloud cases. In 35% of the cases, the simulated clouds are too persistent whatever the microphysical scheme and tend to produce too much solid water (ice and snow) and not enough liquid water.

Corresponding author address: Marjolaine Chiriaco, Laboratoire de Météorologie Dynamique/IPSL, Ecole Polytechnique, 91128 Palaiseau CEDEX, France. Email: chiriaco@lmd.polytechnique.fr

Abstract

The ability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to simulate midlatitude ice clouds is evaluated. Model outputs are compared to long-term meteorological measurements by active (radar and lidar) and passive (infrared and visible fluxes) remote sensing collected at an atmospheric observatory near Paris, France. The goal is to understand which of four microphysical schemes is best suited to simulate midlatitude ice clouds. The methodology consists of simulating instrument observables from the model outputs without any profile inversion, which allows the authors to use fewer assumptions on microphysical and optical properties of ice particles.

Among the four schemes compared in the current study, the best observation-to-simulations scores are obtained with Reisner et al. provided that the particles’ sedimentation velocity from Heymsfield and Donner is used instead of that originally proposed. For this last scheme, the model gives results close to the measurements for clouds with medium optical depth of typically 1 to 3, whatever the season. In this configuration, MM5 simulates the presence of midlatitude ice clouds in more than 65% of the authors’ selection of observed cloud cases. In 35% of the cases, the simulated clouds are too persistent whatever the microphysical scheme and tend to produce too much solid water (ice and snow) and not enough liquid water.

Corresponding author address: Marjolaine Chiriaco, Laboratoire de Météorologie Dynamique/IPSL, Ecole Polytechnique, 91128 Palaiseau CEDEX, France. Email: chiriaco@lmd.polytechnique.fr

Save
  • Beljaars, A. C. M., 1994: The parameterization of surface fluxes in large-scale models under free convection. Quart J. Roy. Meteor. Soc., 121 , 255270.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J. L. Dufresne, H. Le Treut, J. J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22 , 7186.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 132 , 16841700.

    • Search Google Scholar
    • Export Citation
  • Collis, R. T., and P. B. Russel, 1976: Laser Monitoring of the Atmosphere. Springer-Verlag.

  • Doutriaux-Boucher, M., and J. Quaas, 2004: Evaluation of cloud thermodynamic phase parameterizations in the LMDZ GCM by using POLDER satellite data. Geophys. Res. Lett., 31 .L06126, doi:10.1029/2003GL019095.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Grell, G., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Guichard, F., D. B. Parsons, J. Dudhia, and J. Bresch, 2003: Evaluating mesoscale model predictions of clouds and radiation with SGP ARM data over a seasonal timescale. Mon. Wea. Rev., 131 , 926944.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, 1993: Description of the NCAR Community Climate Model (CCM2). NCAR Tech. Note NCAR/TN-382+STR, National Center for Atmospheric Research, Boulder, CO, 108 pp.

  • Haeffelin, M., and Coauthors, 2004: SIRTA, a ground-based atmospheric observatory for clouds and aerosols research. Ann. Geophys., 23 , 253275.

    • Search Google Scholar
    • Export Citation
  • Heckman, S. T., and W. R. Cotton, 1993: Mesoscale numerical simulation of cirrus clouds—FIRE case study and sensitivity analysis. Mon. Wea. Rev., 121 , 22642284.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in term of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. J. Donner, 1990: A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47 , 18651877.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., R. Pincus, C. Hannay, and K. M. Xu, 2004: Use of cloud radar observations for a model evaluation: A probabilistic approach. J. Geophys. Res., 109 .D03202, doi:10.109/2003JD003473.

    • Search Google Scholar
    • Export Citation
  • Kessler III, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci., 55 , 18081821.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995a: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary layer structure. J. Atmos. Sci., 52 , 28392850.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995b: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: Boundary layer circulation. J. Atmos. Sci., 52 , 28512868.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16 , 90109.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., B. Rockel, H. Kapitza, and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr. Phys. Atmos., 65 , 3557.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., B. Rockel, H. Schiller, and L. Kornblueh, 1998: 3-D simulation of clouds with subgrid fluctuations of temperature and humidity. Atmos. Res., 47-48 , 327341.

    • Search Google Scholar
    • Export Citation
  • Lin, R. F., 1997: A numerical study of the evolution of nocturnal cirrus by a two-dimensional model with explicit microphysics. Ph.D. thesis, The Pennsylvania State University, 199 pp.

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. International Geophysics Series, Vol. 84, Academic Press, 175 pp.

  • Liu, Y., F. Chen, T. Warner, and S. Swerdlin, 2004: Improvements to surface flux computations in the MRF PBL scheme, and refinements to urban processes in the NOAH land-surface model with the NCAR/ATEC real-time FDDA and forecast system. Proc. Fifth WRF/MM5 Users Workshop, Boulder, CO.

  • Marshall, J., and W. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Minnis, P., D. P. Garber, and D. F. Young, 1998: Parameterization of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55 , 33133339.

    • Search Google Scholar
    • Export Citation
  • Noel, V., H. Chepfer, G. Ledanois, and P. H. Flamant, 2001: Computation of single-scattering matrix for non-spherical particles randomly or horizontally oriented in space. Appl. Opt., 40 , 43654375.

    • Search Google Scholar
    • Export Citation
  • Noel, V., H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, 2002: Classification of particle effective shape ratios in cirrus clouds based on lidar depolarization ratio. Appl. Opt., 41 , 42454257.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30 , 11911204.

  • Protat, A., J. Delanoë, D. Bouniol, and M. Haeffelin, 2004: Dynamical, microphysical and radiative properties of ice clouds using Doppler cloud radar measurements. Proc. Third European Radar Conf., Visbi, Sweden.

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72 , 18481866.

    • Search Google Scholar
    • Export Citation
  • Tinel, C., J. Testud, J. Pelon, R. Hogan, A. Protat, J. Delanoë, and D. Bouniol, 2005: The retrieval of ice-cloud properties from cloud radar and lidar synergy. J. Appl. Meteor., 44 , 860875.

    • Search Google Scholar
    • Export Citation
  • Troën, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., R. K. Moore, and A. K. Fung, 1943: Microwave Remote-Sensing Active and Passive. Vol. 1, Microwave Remote-Sensing Fundamentals and Radiometry. Artech House.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., A. Arakawa, and S. K. Krueger, 1992: The macroscopic behavior of cumulus ensembles simulated by a cumulus ensemble model. J. Atmos. Sci., 49 , 24022420.

    • Search Google Scholar
    • Export Citation
  • Zurovac-Jevtic, D., and G. J. Zhang, 2003: Development and test of a cirrus parameterization scheme using NCAR CCM3. J. Atmos. Sci., 60 , 13251344.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 74 17
PDF Downloads 131 41 6