• Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131 , 634642.

  • Bennett, A. F., and P. C. McIntosh, 1982: Open ocean modeling as an inverse problem: Tidal theory. J. Phys. Oceanogr., 12 , 10041018.

  • Bennett, A. F., L. M. Leslie, C. R. Gagelberg, and P. E. Powers, 1993: Tropical cyclone prediction using a barotropic model initialized by a generalized inverse method. Mon. Wea. Rev., 121 , 17141729.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., B. S. Chua, and L. M. Leslie, 1996: Generalized inversion of a global numerical weather prediction model. Meteor. Atmos. Phys., 60 , 165178.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. Majumjar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125 , 28852908.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., and D. P. Dee, 1988: Observability of discretized partial differential equations. SIAM J. Numer. Anal., 25 , 586617.

  • Daley, R., 1992: The effect of serially correlated observations and model error on atmospheric data assimilation. Mon. Wea. Rev., 120 , 164177.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and R. Vautard, 2000: Reducing systematic errors by empirically correcting model errors. Tellus, 52A , 2141.

  • Dee, D., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

  • Dee, D., and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124 , 269295.

  • DeMaria, M., and R. W. Jones, 1993: Optimization of a hurricane track forecast model with the adjoint model equations. Mon. Wea. Rev., 121 , 17301745.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., 1989: A variational continuous assimilation technique. Mon. Wea. Rev., 117 , 24372466.

  • Derber, J. C., and W-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126 , 22872302.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5. 1014310162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Griffith, A. K., and N. K. Nichols, 1996: Accounting for model error in data assimilation using adjoint methods. Computational Differentiation: Techniques, Applications, and Tools: Proc. Second Int. SIAM Workshop on Computational Differentiation, Santa Fe, NM, Society for Industrial and Applied Mathematics, 195–204.

  • Griffith, A. K., and N. K. Nichols, 2001: Adjoint techniques in data assimilation for treating systematic model error. J. Flow Turbulence Combust., 65 , 469488.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

  • Hansen, J. A., 2002: Accounting for model error in ensemble-based state estimation and forecasting. Mon. Wea. Rev., 130 , 23732391.

  • Heemink, A. W., M. Verlaan, and A. J. Segers, 2001: Variance reduced ensemble Kalman filtering. Mon. Wea. Rev., 129 , 17181728.

  • Hollander, M., and D. A. Wolfe, 1973: Nonparametric Statistical Methods. John Wiley and Sons, 503 pp.

  • Hou, A. Y., D. Ledvina, A. da Silva, S. Zhang, J. Joiner, R. Atlas, G. Huffman, and C. Kummerow, 2000: Assimilation of SSM/I-derived surface rainfall and total precipitable water for improving the GEOS analysis for climate studies. Mon. Wea. Rev., 128 , 509537.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., S. Zhang, A. da Silva, W. Olson, C. Kummerow, and J. Simpson, 2001: Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82 , 659679.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Jones, J. W., W. D. Graham, D. Wallach, W. M. Bostick, and J. Koo, 2004: Estimating soil carbon levels using an ensemble Kalman filter. Trans. ASAE, 47 , 331339.

    • Search Google Scholar
    • Export Citation
  • Kalman, R., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., D82 , 3545.

  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Keppenne, C., 2000: Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Wea. Rev., 128 , 19711981.

    • Search Google Scholar
    • Export Citation
  • Kivman, G. A., 2003: Sequential parameter estimation for stochastic systems. Nonlinear Processes Geophys., 10 , 253259.

  • LeDimet, F. X., and I. M. Navon, 1988: Variational and optimization methods in meteorology: A review. Tech. Rep. SCRI-144, Supercomputer Computations Research Institute, The Florida State University, Tallahassee, FL, 83 pp. [Available from Supercomputer Computations Research Institute, The Florida State University, Tallahasee, FL 32306.].

  • Lee, M-S., and D-K. Lee, 2003: An application of a weakly constrained 4DVAR to satellite data assimilation and heavy rainfall simulation. Mon. Wea. Rev., 131 , 21512176.

    • Search Google Scholar
    • Export Citation
  • Marchant, T. R., and N. F. Smyth, 2002: The initial-boundary problem for the Korteweg–de Vries equation on the negative quarter-plane. Proc. Roy. Soc. London,, A458 , 857871.

    • Search Google Scholar
    • Export Citation
  • Martin, M. J., N. K. Nichols, and M. J. Bell, 1999: Treatment of systematic errors in sequential data assimilation. Tech. Note 21, Ocean Applications Division, U.K. Met Office, 45 pp.

  • Martin, M. J., M. J. Bell, and N. K. Nichols, 2002: Estimation of systematic error in an equatorial ocean model using data assimilation. Int. J. Numer. Methods Fluids, 40 , 435444.

    • Search Google Scholar
    • Export Citation
  • Menard, R., S. E. Cohn, L-P. Chang, and P. M. Lyster, 2000: Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part I: Formulation. Mon. Wea. Rev., 128 , 26542671.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128 , 416433.

  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Muccino, J. C., and A. F. Bennett, 2002: Generalized inversion of the Korteweg–de Vries equation. Dyn. Atmos. Ocean, 35 , 227263.

  • Navon, I. M., 1997: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dyn. Atmos. Ocean, 27 , 5579.

    • Search Google Scholar
    • Export Citation
  • Nichols, N. K., 2003: Treating model error in 3-D and 4-D Data Assimilation. Data Assimilation for the Earth System, R. Swinbank, V. Shutyaev, and W. A. Lahoz, Eds., Kluwer Academic, 127–135.

    • Search Google Scholar
    • Export Citation
  • Orrell, D., 2003: Model error and predictability over different timescales in the Lorenz ‘96 systems. J. Atmos. Sci., 60 , 22192228.

    • Search Google Scholar
    • Export Citation
  • Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, and D. J. Patil, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A , 415428.

    • Search Google Scholar
    • Export Citation
  • Panchang, V. G., and J. J. O’Brien, 1989: On the determination of hydraulic model parameters using the strong constraint formulation. Modeling Marine Systems, Vol. 1, A. M. Davies, Ed., CRC Press, 5–18.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002a: Hydrologic data assimilation with the ensemble Kalman filter. Mon. Wea. Rev., 130 , 103114.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., J. P. Walker, R. D. Koster, and P. R. Houser, 2002b: Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometeor., 3 , 728740.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. K., 1970: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 98 , 875883.

  • Sasaki, Y. K., 2003: A theory of variational assimilation with Kalman filter–type constraints: Bias and Lagrange multiplier. Mon. Wea. Rev., 131 , 25452554.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 1987: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, 613 pp.

  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Uboldi, F., and M. Kamachi, 2000: Time–space weak-constraint data assimilation for nonlinear models. Tellus, 52A , 412421.

  • van Leeuwen, P. J., 2001: An ensemble smoother with error estimates. Mon. Wea. Rev., 129 , 709728.

  • Vidard, P. A., E. Blayo, F-X. Le Dimet, and A. Piacentini, 2000: 4D variational data analysis with imperfect model. Flow Turbulence Combust., 65 , 489504.

    • Search Google Scholar
    • Export Citation
  • Vvedensky, D., 1993: Partial Differential Equations with Mathematica. Addison-Wesley, 465 pp.

  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Zhang, F., C. Synder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Rev. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Zou, X., I. M. Navon, and F. X. LeDimet, 1992: An optimal nudging data assimilation scheme using parameter estimation. Quart. J. Roy. Meteor. Soc., 118 , 11631186.

    • Search Google Scholar
    • Export Citation
  • Zupanski, D., 1997: A general weak constraint applicable to operational 4DVAR data assimilation systems. Mon. Wea. Rev., 125 , 22742292.

    • Search Google Scholar
    • Export Citation
  • Zupanski, D., M. Zupanski, E. Rogers, D. F. Parrish, and G. J. DiMego, 2002: Fine-resolution 4DVAR data assimilation for the Great Plains tornado outbreak of 3 May 1999. Wea. Forecasting, 17 , 506525.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 1993: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment. Mon. Wea. Rev., 121 , 23962408.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133 , 17101726.

  • Zupanski, M., D. Zupanski, D. Parrish, E. Rogers, and G. J. DiMego, 2002: Four-dimensional variational data assimilation for the blizzard of 2000. Mon. Wea. Rev., 130 , 19671988.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 119 12
PDF Downloads 276 123 17

Model Error Estimation Employing an Ensemble Data Assimilation Approach

View More View Less
  • 1 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
Restricted access

Abstract

A methodology for model error estimation is proposed and examined in this study. It provides estimates of the dynamical model state, the bias, and the empirical parameters by combining three approaches: 1) ensemble data assimilation, 2) state augmentation, and 3) parameter and model bias estimation. Uncertainties of these estimates are also determined, in terms of the analysis and forecast error covariances, employing the same methodology.

The model error estimation approach is evaluated in application to Korteweg–de Vries–Burgers (KdVB) numerical model within the framework of maximum likelihood ensemble filter (MLEF). Experimental results indicate improved filter performance due to model error estimation. The innovation statistics also indicate that the estimated uncertainties are reliable. On the other hand, neglecting model errors—either in the form of an incorrect model parameter, or a model bias—has detrimental effects on data assimilation, in some cases resulting in filter divergence.

Although the method is examined in a simplified model framework, the results are encouraging. It remains to be seen how the methodology performs in applications to more complex models.

Corresponding author address: Dusanka Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: Zupanski@cira.colostate.edu

Abstract

A methodology for model error estimation is proposed and examined in this study. It provides estimates of the dynamical model state, the bias, and the empirical parameters by combining three approaches: 1) ensemble data assimilation, 2) state augmentation, and 3) parameter and model bias estimation. Uncertainties of these estimates are also determined, in terms of the analysis and forecast error covariances, employing the same methodology.

The model error estimation approach is evaluated in application to Korteweg–de Vries–Burgers (KdVB) numerical model within the framework of maximum likelihood ensemble filter (MLEF). Experimental results indicate improved filter performance due to model error estimation. The innovation statistics also indicate that the estimated uncertainties are reliable. On the other hand, neglecting model errors—either in the form of an incorrect model parameter, or a model bias—has detrimental effects on data assimilation, in some cases resulting in filter divergence.

Although the method is examined in a simplified model framework, the results are encouraging. It remains to be seen how the methodology performs in applications to more complex models.

Corresponding author address: Dusanka Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: Zupanski@cira.colostate.edu

Save