• Anthes, R. A., 1983: Regional model of the atmosphere in middle latitudes. Mon. Wea. Rev., 111 , 13061335.

  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

  • Benoit, R., J. Cote, and J. Mailhot, 1989: Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev., 117 , 17261750.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-implicit semi-Lagrangian wide-band atmospheric model suited for fine-scale process studies and simulation. Mon. Wea. Rev., 125 , 23822415.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., N. Kouwen, W. Yu, S. Chamberland, and P. Pellerin, 2003: Hydrometeorological aspects of the real-time ultrafinescale forecast support during the special observing period of the MAP. Hydrol. Earth Syst. Sci., 7 , 877889.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. Sanders, 1991: An early-season coastal storm: Conceptual success and model failure. Mon. Wea. Rev., 119 , 28312851.

    • Search Google Scholar
    • Export Citation
  • Davies, C. A., 1992: A potential vorticity diagnosis of the importance of the initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120 , 24092428.

    • Search Google Scholar
    • Export Citation
  • Davies, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119 , 19291953.

  • Davolio, S., and A. Buzzi, 2004: A nudging scheme for the assimilation of precipitation data into a mesoscale model. Wea. Forecasting, 19 , 855871.

    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1942: Ein nueur hydrodynanischer wirbelsatz. Meteor. Z., 59 , 277281.

  • Fillion, L., and R. Errico, 1997: Variational assimilation of precipitation data using moist convective parameterization schemes. Mon. Wea. Rev., 125 , 29172942.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., and S. Belair, 2004: Tangent linear aspects of the Kain–Fritsch moist convective parameterization scheme. Mon. Wea. Rev., 132 , 24772494.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37 , 17221733.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the eighth prospectus development team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79 , 285299.

    • Search Google Scholar
    • Export Citation
  • Garand, L., 1983: Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J. Atmos. Sci., 40 , 230244.

    • Search Google Scholar
    • Export Citation
  • Garand, L., and C. Grassotti, 1995: Toward an objective analysis of rainfall rate combining observations and short-term forecast model estimates. J. Appl. Meteor., 34 , 19621977.

    • Search Google Scholar
    • Export Citation
  • Grassotti, C., R. N. Hoffman, E. R. Vivoni, and D. Entekhabi, 2003: Multiple-timescale intercomparison of two radar products and rain gauge observations over the Arkansas–Red River basin. Wea. Forecasting, 18 , 12071229.

    • Search Google Scholar
    • Export Citation
  • Guo, Y-R., Y-H. Kuo, J. Dudhia, D. Parsons, and C. Rocken, 2000: Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Wea. Rev., 128 , 619643.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. S., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14 , 155167.

  • Hammer, G. R., and P. M. Steurer, 1997: Data set documentation for hourly precipitation data. NOAA/NCDC Tech. Doc. 3240, Documentation Series, Asheville, NC, 1–18.

  • Hoskins, B. J., M. E. McIntyre, and R. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., D-L. Zhang, and J. Gyakum, 1998: An application of potential vorticity inversion to improving the numerical prediction of the March 1993 superstorm. Mon. Wea. Rev., 126 , 424436.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., D-L. Zhang, and J. Gyakum, 1999: Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part I: Static piecewise inversion. Mon. Wea. Rev., 127 , 25462561.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., A. P. Mizzi, and L. J. Donner, 1992: Impact of cumulus initialization on the spinup of precipitation forecasts in the Tropics. Mon. Wea. Rev., 120 , 13601380.

    • Search Google Scholar
    • Export Citation
  • Kong, F. Y., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.–Ocean, 35 , 257291.

  • Krishnamurti, T. N., H. S. Bedi, and K. Ingles, 1993: Physical initialization using the SSM/I rain rate. Tellus, 45A , 247269.

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Lin, C. A., L. Wen, M. Beland, and D. Chaumont, 2002: A coupled atmospheric-hydrological modeling study of the 1996 Ha! Ha! River basin flash flood in Quebec, Canada. Geophys. Res. Lett., 29 .1026, doi:10.1029/2001GL013827.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 72–73.

  • Marecal, V., and J-F. Mahfouf, 2002: Four-dimensional variational assimilation of total column water vapor in rainy areas. Mon. Wea. Rev., 130 , 4358.

    • Search Google Scholar
    • Export Citation
  • Mekis, E., and W. D. Hogg, 1999: Rehabilitation and analysis of Canadian daily precipitation time series. Atmos.–Ocean, 37 , 5385.

  • Milbrandt, J. A., and M. K. Yau, 2001: A mesoscale modeling study of the 1996 Saguenay flood. Mon. Wea. Rev., 129 , 14191440.

  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Search Google Scholar
    • Export Citation
  • Nagarajan, B., M. K. Yau, and D-L. Zhang, 2001: A numerical study of a mesoscale convective system during TOGA COARE. Part I: Model description and verification. Mon. Wea. Rev., 129 , 25012520.

    • Search Google Scholar
    • Export Citation
  • Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10 , 498511.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66 , 6887.

  • Stensrud, D. J., and J. M. Fritsch, 1994: Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of a mesoscale initial condition. Mon. Wea. Rev., 122 , 20682083.

    • Search Google Scholar
    • Export Citation
  • Treadon, R. E., H-L. Pan, W-S. Wu, Y. Lin, W. S. Olson, and R. J. Kuligowski, 2003: Global and regional moisture analyses at NCEP. Proc. ECMWF/GEWEX Workshop on Humidity Analysis, Reading, United Kingdom, ECMWF, 33–48.

  • Tsuyuki, T., K. Koizumi, and Y. Ishikawa, 2003: The JMA mesoscale 4D-Var system and assimilation of precipitation and moisture data. Proc. ECMWF/GEWEX Workshop on Humidity Analysis, Reading, United Kingdom, ECMWF, 59–68.

  • Verret, R., L. Lefaivre, J-G. Desmarais, and T. Robinson, 1996: Intense precipitation in Quebec, July 19–20, 1996. Can. Meteor. Center Rev., 3 , 129.

    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and J. M. Fritsch, 1986: Numerical simulation of the meso-β-scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43 , 19131943.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Y-H. Kuo, 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Wea. Rev., 124 , 28592882.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 26 0
PDF Downloads 33 19 0

A Numerical Study of the 1996 Saguenay Flood Cyclone: Effect of Assimilation of Precipitation Data on Quantitative Precipitation Forecasts

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 2 Meteorological Service of Canada, Dorval, Quebec, Canada
Restricted access

Abstract

A one-dimensional variational (1DVAR) technique is applied to assimilate rain gauge precipitation data to extend the predictability of the Saguenay flood cyclone associated with a trough-merger event on 19–21 July 1996 in the Saguenay-Lac-Saint-Jean region of Quebec, Canada.

Two 60-h simulations initialized at 0000 UTC 19 July were performed with the Canadian Mesoscale Compressible Community (MC2) model. The control (CTL) and NCEP simulations were initialized with the enhanced temperature and moisture profiles obtained from the 1DVAR scheme and the NCEP reanalysis data, respectively.

Compared to observations, the CTL simulation reasonably reproduced the observed mass and wind fields and showed a marked improvement in the threat scores for heavy precipitation. The CTL run captured the observed spatial and temporal distribution of precipitation but overpredicted the area of precipitation. Sensitivity experiments showed that the threat (bias) scores are less (somewhat) sensitive to the specification of the observation error of the precipitation data. Of the four precipitation systems present at model initial time, the systems in the vicinity of the southern trough had the biggest impact on the threat score.

Potential vorticity diagnostics of the CTL simulation suggested that the initial temperature and moisture field near the southern trough decreased the condensational heating relative to NCEP. This resulted in a stronger zonal wind component in the upper levels associated with the southern trough in CTL that retarded the eastward propagation of the northern trough, resulting in a correct placement of the surface precipitation and an improvement in the threat scores relative to NCEP.

Corresponding author address: Dr. Badrinath Nagarajan, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, PQ H3A 2K6, Canada. Email: badrinath.nagarajan@elf.mcgill.ca

Abstract

A one-dimensional variational (1DVAR) technique is applied to assimilate rain gauge precipitation data to extend the predictability of the Saguenay flood cyclone associated with a trough-merger event on 19–21 July 1996 in the Saguenay-Lac-Saint-Jean region of Quebec, Canada.

Two 60-h simulations initialized at 0000 UTC 19 July were performed with the Canadian Mesoscale Compressible Community (MC2) model. The control (CTL) and NCEP simulations were initialized with the enhanced temperature and moisture profiles obtained from the 1DVAR scheme and the NCEP reanalysis data, respectively.

Compared to observations, the CTL simulation reasonably reproduced the observed mass and wind fields and showed a marked improvement in the threat scores for heavy precipitation. The CTL run captured the observed spatial and temporal distribution of precipitation but overpredicted the area of precipitation. Sensitivity experiments showed that the threat (bias) scores are less (somewhat) sensitive to the specification of the observation error of the precipitation data. Of the four precipitation systems present at model initial time, the systems in the vicinity of the southern trough had the biggest impact on the threat score.

Potential vorticity diagnostics of the CTL simulation suggested that the initial temperature and moisture field near the southern trough decreased the condensational heating relative to NCEP. This resulted in a stronger zonal wind component in the upper levels associated with the southern trough in CTL that retarded the eastward propagation of the northern trough, resulting in a correct placement of the surface precipitation and an improvement in the threat scores relative to NCEP.

Corresponding author address: Dr. Badrinath Nagarajan, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, PQ H3A 2K6, Canada. Email: badrinath.nagarajan@elf.mcgill.ca

Save