• Baker, W. E., S. Bloom, H. Woollen, M. Nestler, E. Brin, T. Schlatter, and T. Branstrator, 1987: Experiments with a three-dimensional statistical objective analysis scheme using FGGE data. Mon. Wea. Rev., 115 , 272296.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y-R. Guo, and A. Bourgeois, 2003: A three-dimensional Variational (3DVAR) Data Assimilation System for use with MM5. NCAR Tech. Note NCAR/TN-453+STR, 68 pp.

  • Barker, D. M., W. Huang, Y-R. Guo, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using Incremental Analysis Updates. Mon. Wea. Rev., 124 , 12561271.

    • Search Google Scholar
    • Export Citation
  • Clayton, A., 2003: Incremental Analysis Update (IAU) scheme. Unified Model Documentation Paper 31, UK Met Office, 20 pp.

  • Daley, R., 1979: The application of nonlinear normal mode initialization to an operational forecast model. Atmosphere. Atmos.–Ocean, 17 , 97124.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: : Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Fillion, L., H. L. Mitchell, H. Richie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A , 304323.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398 +STR, 122 pp.

  • Guo, Y-R., D-H. Shin, J-H. Lee, Q-N. Xiao, D. M. Barker, and Y-H. Kuo, 2002: Application of MM5 3DVAR system for heavy rain case over Korea Peninsula. Preprints, 12th PSU/NCAR Mesoscale Model User Workshop, Boulder, CO, 161–165.

  • Kasahara, A., R. C. Balgovind, and B. B. Katz, 1988: Use of satellite radiometric imagery data for improvement in the analysis of divergent wind in the tropics. Mon. Wea. Rev., 116 , 866883.

    • Search Google Scholar
    • Export Citation
  • Lee, M-S., and D-K. Lee, 2003: An application of a weakly constrained 4DVAR to satellite data assimilation and heavy rainfall simulation. Mon. Wea. Rev., 131 , 21512176.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120 , 10191034.

  • Lynch, P., and X-Y. Huang, 1993: Diabatic digital-filtering initialization: Application to the HIRLAM model. Mon. Wea. Rev., 121 , 589603.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., D. Giard, and V. Ivanovici, 1997: Improving the efficiency of a digital filtering scheme for diabatic initialization. Mon. Wea. Rev., 125 , 19761982.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., R. McGrath, and A. McDonald, 1999: Digital filter initialization for HIRAM. HIRAM Tech. Rep. 42, 22 pp. [Available from HIRLAM-5, c/o Per Unden, SMHI, S-60176 Norrkoping, Sweden.].

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral-interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., S. Ren, A. M. Clayton, D. Sankey, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132 , 24952502.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1996: Numerical Recipes in Fortran 77. 2d ed. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Puri, K., 1985: Sensitivity of low-latitude velocity potential fields in a numerical weather-prediction model to initial conditions, initialization, and physical processes. Mon. Wea. Rev., 113 , 449466.

    • Search Google Scholar
    • Export Citation
  • Puri, K., and M. J. Miller, 1990: The use of satellite data in the specification of convective heating for diabatic initialization and moisture adjustment in numerical weather prediction models. Mon. Wea. Rev., 118 , 6793.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F. H. M., and I. M. Navon, 1986: A comparison of the bounded derivative and the normal-mode initialization methods using real data. Mon. Wea. Rev., 114 , 21062121.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., J. Sun, W-C. Lee, E. Lim, Y-R. Guo, D. M. Barker, and Y-H. Kuo, 2003: Assimilation of Doppler radial velocities using a regional 3DVAR system and its impacts on mesoscale weather prediction over the Korean Peninsula. Preprints, 13th PSU/NCAR Mesoscale Model User Workshop, NCAR, Boulder, CO, 101–104.

  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 111 7
PDF Downloads 92 42 3

Incremental Analysis Updates Initialization Technique Applied to 10-km MM5 and MM5 3DVAR

View More View Less
  • 1 Korea Meteorological Administration, Seoul, South Korea
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Korea Meteorological Administration, Seoul, South Korea
Restricted access

Abstract

An incremental analysis updates (IAU) technique is implemented for 3-h updates of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) three-dimensional variational data assimilation (3DVAR) and model system with a 10-km resolution to remove spurious gravity waves. By gradually incorporating analysis increments, IAU affects only the removal of high frequencies, leaving the waves related to diurnal processes. IAU appears to be efficient in reducing the moisture spinup problem in the MM5 3DVAR cycling system. The advantage of the IAU is the most significant in improving precipitation forecasts. Rapid update cycle (RUC) with 1- and 2-h intervals in conjunction with the IAU indicates a rapid minimization and less spinup and -down problems because of greater balancing between the moisture and dynamic variables. Impact studies are performed on a heavy rainfall case that occurred in the Korean Peninsula. Verification results with a 3-h cycling system are presented on operational environments.

Corresponding author address: Dr. Ying-Hwa Kuo, MMM/National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: kuo@ucar.edu

Abstract

An incremental analysis updates (IAU) technique is implemented for 3-h updates of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) three-dimensional variational data assimilation (3DVAR) and model system with a 10-km resolution to remove spurious gravity waves. By gradually incorporating analysis increments, IAU affects only the removal of high frequencies, leaving the waves related to diurnal processes. IAU appears to be efficient in reducing the moisture spinup problem in the MM5 3DVAR cycling system. The advantage of the IAU is the most significant in improving precipitation forecasts. Rapid update cycle (RUC) with 1- and 2-h intervals in conjunction with the IAU indicates a rapid minimization and less spinup and -down problems because of greater balancing between the moisture and dynamic variables. Impact studies are performed on a heavy rainfall case that occurred in the Korean Peninsula. Verification results with a 3-h cycling system are presented on operational environments.

Corresponding author address: Dr. Ying-Hwa Kuo, MMM/National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: kuo@ucar.edu

Save