• Andra, D. L., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17 , 559566.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127 , 29102927.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3 , 396409.

  • Barnes, S. L., 1978: Oklahoma thunderstorms on 29–30 April 1970. Part I: Morphology of a tornadic storm. Mon. Wea. Rev., 106 , 673684.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. G. Gaddy, 2001: Airborne pseudo-dual-Doppler analysis of a rear-inflow jet and deep convergence zone within a supercell. Mon. Wea. Rev., 129 , 22702289.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Brandes, E. A., 1981: Finestructure of the Del City-Edmond tornadic mesocirculation. Mon. Wea. Rev., 109 , 635647.

  • Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112 , 10331052.

  • Brooks, H. E., and C. A. Doswell III, 2002: Deaths in the 3 May 1999 Oklahoma City Tornado from a historical perspective. Wea. Forecasting, 17 , 354361.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. Davies-Jones, 1993: Environmental helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 143–159.

  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994a: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606618.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. B. Wilhelmson, 1994b: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122 , 126136.

    • Search Google Scholar
    • Export Citation
  • Brown, S., P. Archer, E. Kruger, and S. Mallonee, 2002: Tornado-related deaths and injuries in Oklahoma due to the 3 May 1999 tornadoes. Wea. Forecasting, 17 , 343353.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., R. A. Brown, L. R. Lemon, and C. R. Safford, 1977: Evolution of a tornadic thunderstorm. Preprints, 10th Conf. on Severe Local Storms, Omaha, NE, Amer. Meteor. Soc., 84–89.

  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City Tornado. Wea. Forecasting, 17 , 456471.

    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., 1969: An analysis of over sixty tornado proximity soundings. Preprints, Sixth Conf. on Severe Local Storms, Chicago, IL, Amer. Meteor. Soc., 218–221.

  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41 , 29913006.

  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–222.

  • Doswell III, C. A., D. V. Baker, and C. A. Liles, 2002: Recognition of negative mesoscale factors for severe-weather potential: A case study. Wea. Forecasting, 17 , 937954.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125 , 25622582.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., S. F. Corfidi, R. L. Thompson, J. S. Evans, J. P. Craven, J. P. Racy, D. W. McCarthy, and M. D. Vescio, 2002: Storm Prediction Center forecasting issues related to the 3 May 1999 tornado outbreak. Wea. Forecasting, 17 , 544558.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fujita, T. T., 1975: New evidence from the April 3–4, 1974 tornadoes. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 248–255.

  • Gilmore, M. S., and L. J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130 , 23492372.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, C. A. Finley, and J. L. Schroeder, 2004: Thermodynamic characterization of supercell rear-flank downdrafts in Project ANSWERS 2003. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, P11.1.

  • Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42 , 1835.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19 , 369402.

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40 , 359377.

  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and P. Skinner, 2004: Thermodynamic and kinematic analysis of multiple RFD surges for the 24 June 2003 Manchester, SD cyclic tornadic supercell during Project ANSWERS 2003. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, P11.2.

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Ludlum, F. H., 1963: Severe local storms: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 1–30.

  • Markowski, P. M., 2002a: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130 , 852876.

  • Markowski, P. M., 2002b: Mobile mesonet observations on 3 May 1999. Wea. Forecasting, 17 , 430444.

  • Markowski, P. M., and Y. P. Richardson, 2004: Multiple-Doppler radar observations of vertical wind profile heterogeneity in convective boundary layers. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, P13.1.

  • Markowski, P. M., and J. Y. Harrington, 2005: A simulation of a supercell thunderstorm with emulated radiative cooling beneath the anvil. J. Atmos. Sci., 62 , 26072617.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, J. M. Straka, and D. C. Dowell, 1998a: Observations of low-level baroclinity generated by anvil shadows. Mon. Wea. Rev., 126 , 29422958.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998b: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13 , 852859.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic measurements within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130 , 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60 , 795823.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. P., 2002: Tornado damage survey at Moore, Oklahoma. Wea. Forecasting, 17 , 582598.

  • McCarthy, D. H., 2002: The role of ground-truth reports in the warning-decision making process during the 3 May 1999 Oklahoma tornado outbreak. Wea. Forecasting, 17 , 647649.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., K. J. Berry, and G. W. Brier, 1981: Application of multi-response permutation procedures for examining seasonal changes in monthly mean sea-level pressure patterns. Mon. Wea. Rev., 109 , 120126.

    • Search Google Scholar
    • Export Citation
  • Pan, K., P. Montpellier, and M. Zadeh, 2002: Engineering observations of the 3 May 1999 Oklahoma tornado damage. Wea. Forecasting, 17 , 599610.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18 , 530535.

  • Rasmussen, E. N., and J. M. Straka, 1996: Mobile mesonet observations of tornadoes during VORTEX-95. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 1–5.

  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the origins of rotation in tornadoes experiment: VORTEX. Bull. Amer. Meteor. Soc., 75 , 9951006.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., S. J. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128 , 174191.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, and R. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17 , 399429.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109 , 577586.

  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42 , 271292.

    • Search Google Scholar
    • Export Citation
  • Speheger, D. A., C. A. Doswell III, and G. J. Stumpf, 2002: The tornadoes of 3 May 1999: Event verification in central Oklahoma and related issues. Wea. Forecasting, 17 , 362381.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44 , 17521774.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and S. J. Weiss, 2002: Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17 , 526543.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for fine-scale meteorological observations. J. Atmos. Oceanic Technol., 13 , 921936.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15 , 682699.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 12431261.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornado-genesis failure during VORTEX. Mon. Wea. Rev., 127 , 16931705.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 2001: Convectively driven high wind events. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 255–298.

  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev., 128 , 565592.

  • Wakimoto, R. M., H. V. Murphey, D. C. Dowell, and H. B. Bluestein, 2003: The Kellerville Tornado during VORTEX: Damage survey and Doppler radar analyses. Mon. Wea. Rev., 131 , 21972221.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., 1996: The role of near surface wind shear on low-level mesocyclone generation and tornadoes. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 115–119.

  • Wilhelmson, R. B., and L. J. Wicker, 2001: Numerical modeling of severe local storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 123–166.

  • Wurman, J., 2002: The multiple vortex structure of a tornado. Wea. Forecasting, 17 , 473505.

  • Yuan, M., M. Dickens-Micozzi, and M. A. Magsig, 2002: Analysis of tornado damage tracks from the 3 May tornado outbreak using multispectral satellite imagery. Wea. Forecasting, 17 , 382398.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 214 105 6
PDF Downloads 199 110 7

Surface In Situ Observations within the Outflow of Forward-Flank Downdrafts of Supercell Thunderstorms

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

In the long-standing conceptual model of a supercell thunderstorm, the forward-flank downdraft (FFD) and its associated negative buoyancy originate from precipitation loading and the latent chilling of air due to the melting and evaporation of precipitation. The horizontal buoyancy gradient within the outflow of the FFD has been identified as an important source of low-level, streamwise vorticity in three-dimensional numerical simulations of supercells. These simulations have demonstrated that the formation of low-level mesocyclones is critically dependent on the baroclinic generation of horizontal vorticity within the FFD outflow.

Despite the implied dynamical importance of the FFD outflow in the evolution of supercell thunderstorms, only a very limited number of thermodynamic observations have been obtained within FFD outflow. The range of thermodynamic conditions within FFD outflow is not well known, nor is it known whether any systematic relationship exists between the thermodynamic characteristics of FFD outflow and the intensity of low-level mesocyclones and/or tornadogenesis. In this paper, in situ observations obtained at the ground by a mobile mesonet within FFD outflow are used to investigate whether any relationship exists between the thermodynamic characteristics of the outflow and low-level mesocyclogenesis and/or tornadogenesis. The data were obtained within both tornadic and nontornadic supercells (12 cases total) during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) from 1994 to 1995, and in smaller field campaigns during the 1997–99 period.

* Current affiliation: AccuWeather, Inc., State College, Pennsylvania

Corresponding author address: Dr. Paul Markowski, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. Email: pmarkowski@psu.edu

Abstract

In the long-standing conceptual model of a supercell thunderstorm, the forward-flank downdraft (FFD) and its associated negative buoyancy originate from precipitation loading and the latent chilling of air due to the melting and evaporation of precipitation. The horizontal buoyancy gradient within the outflow of the FFD has been identified as an important source of low-level, streamwise vorticity in three-dimensional numerical simulations of supercells. These simulations have demonstrated that the formation of low-level mesocyclones is critically dependent on the baroclinic generation of horizontal vorticity within the FFD outflow.

Despite the implied dynamical importance of the FFD outflow in the evolution of supercell thunderstorms, only a very limited number of thermodynamic observations have been obtained within FFD outflow. The range of thermodynamic conditions within FFD outflow is not well known, nor is it known whether any systematic relationship exists between the thermodynamic characteristics of FFD outflow and the intensity of low-level mesocyclones and/or tornadogenesis. In this paper, in situ observations obtained at the ground by a mobile mesonet within FFD outflow are used to investigate whether any relationship exists between the thermodynamic characteristics of the outflow and low-level mesocyclogenesis and/or tornadogenesis. The data were obtained within both tornadic and nontornadic supercells (12 cases total) during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) from 1994 to 1995, and in smaller field campaigns during the 1997–99 period.

* Current affiliation: AccuWeather, Inc., State College, Pennsylvania

Corresponding author address: Dr. Paul Markowski, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. Email: pmarkowski@psu.edu

Save