Intercomparison of Bulk Cloud Microphysics Schemes in Mesoscale Simulations of Springtime Arctic Mixed-Phase Stratiform Clouds

H. Morrison Department of Aerospace Engineering, University of Colorado, Boulder, Colorado

Search for other papers by H. Morrison in
Current site
Google Scholar
PubMed
Close
and
J. O. Pinto Department of Aerospace Engineering, University of Colorado, and NCAR, Boulder, Colorado

Search for other papers by J. O. Pinto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A persistent, weakly forced, horizontally extensive mixed-phase boundary layer cloud observed on 4–5 May 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) is modeled using three different bulk microphysics parameterizations of varying complexity implemented into the polar version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The two simpler schemes predict mostly ice clouds and very little liquid water, while the complex scheme is able to reproduce the observed persistence and horizontal extent of the mixed-phase stratus deck. This mixed-phase cloud results in radiative warming of the surface, the development of a cloud-topped, surface-based mixed layer, and an enhanced precipitation rate. In contrast, the optically thin ice clouds predicted by the simpler schemes lead to radiative cooling of the surface, a strong diurnal cycle in the boundary layer structure, and very weak precipitation. The larger surface precipitation rate using the complex scheme is partly balanced by an increase in the turbulent flux of water vapor from the surface to the atmosphere. This enhanced vapor flux is attributed to changes in the surface and boundary layer characteristics induced by the cloud itself, although cloud–surface interactions appear to be exaggerated in the model compared with reality. The prediction of extensive mixed-phase stratus by the complex scheme is also associated with increased surface pressure and subsidence relative to the other simulations. Sensitivity tests show that the detailed treatment of ice nucleation and prediction of snow particle number concentration in the complex scheme suppresses ice particle concentration relative to the simpler schemes, reducing the vapor deposition rate (for given values of bulk ice mass and ice supersaturation) and leading to much greater amounts of liquid water and mixed-phase cloudiness. These results suggest that the treatments of ice nucleation and the snow intercept parameter in the simpler schemes, which are based upon midlatitude observations, are inadequate for simulating the weakly forced mixed-phase clouds endemic to the Arctic.

Corresponding author address: Dr. Hugh Morrison, National Center for Atmospheric Research/MM5 Division, P.O. Box 3000, Boulder, CO 80309. Email: morrison@ucar.edu

Abstract

A persistent, weakly forced, horizontally extensive mixed-phase boundary layer cloud observed on 4–5 May 1998 during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) is modeled using three different bulk microphysics parameterizations of varying complexity implemented into the polar version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The two simpler schemes predict mostly ice clouds and very little liquid water, while the complex scheme is able to reproduce the observed persistence and horizontal extent of the mixed-phase stratus deck. This mixed-phase cloud results in radiative warming of the surface, the development of a cloud-topped, surface-based mixed layer, and an enhanced precipitation rate. In contrast, the optically thin ice clouds predicted by the simpler schemes lead to radiative cooling of the surface, a strong diurnal cycle in the boundary layer structure, and very weak precipitation. The larger surface precipitation rate using the complex scheme is partly balanced by an increase in the turbulent flux of water vapor from the surface to the atmosphere. This enhanced vapor flux is attributed to changes in the surface and boundary layer characteristics induced by the cloud itself, although cloud–surface interactions appear to be exaggerated in the model compared with reality. The prediction of extensive mixed-phase stratus by the complex scheme is also associated with increased surface pressure and subsidence relative to the other simulations. Sensitivity tests show that the detailed treatment of ice nucleation and prediction of snow particle number concentration in the complex scheme suppresses ice particle concentration relative to the simpler schemes, reducing the vapor deposition rate (for given values of bulk ice mass and ice supersaturation) and leading to much greater amounts of liquid water and mixed-phase cloudiness. These results suggest that the treatments of ice nucleation and the snow intercept parameter in the simpler schemes, which are based upon midlatitude observations, are inadequate for simulating the weakly forced mixed-phase clouds endemic to the Arctic.

Corresponding author address: Dr. Hugh Morrison, National Center for Atmospheric Research/MM5 Division, P.O. Box 3000, Boulder, CO 80309. Email: morrison@ucar.edu

Save
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105 , 945962.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: Modeling of condensation and collection within clouds. Desert Research Institute Physical Sciences Publication 16, University of Nevada, 96 pp.

  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, 66B , 688694.

  • Bigg, E. K., 1996: Ice forming nuclei in the high Arctic. Tellus, 48B , 223233.

  • Borys, R. D., 1989: Studies of ice nucleation by arctic aerosol on AGASP-II. J. Atmos. Chem., 9 , 169185.

  • Briegleb, B., 1992a: Delta-eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97 , 76037612.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B., 1992b: Longwave band model for thermal radiation in climate studies. J. Geophys. Res., 97 , 1147511485.

  • Bromwich, D. H., J. J. Cassano, T. Klein, T. G. Heinemann, K. M. Hines, K. Steffen, and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129 , 22902309.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., P. Gloerson, and J. Zwally, 2006: DMSP SSM/I daily polar gridded sea ice concentrations, June to September 2001, National Snow and Ice Data Center, Boulder, CO.

  • Chen, Y., J. A. Francis, and J. R. Miller, 2002: Surface temperature of the Arctic: Comparison of TOVS satellite retrievals with surface observations. J. Climate, 15 , 36983708.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1983: On the formation of polar continental air. J. Atmos. Sci., 40 , 22792292.

  • Curry, J. A., 1987: Role of radiative transfer in the formation of cold-core anticyclones. J. Atmos. Sci., 44 , 25752592.

  • Curry, J. A., W. B. Rossow, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation properties. J. Climate, 9 , 17311764.

  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice-cloud optical properties for climate models. J. Geophys. Res., 97 , 38313836.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice microphysics in the CSU General Circulation Model. Part I: Model description and simulated microphysical processes. J. Climate, 9 , 489529.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. C. Easter, 1992: Computationally efficient approximations to stratiform cloud microphysics parameterization. Mon. Wea. Rev., 120 , 15721582.

    • Search Google Scholar
    • Export Citation
  • Girard, E., and J. A. Curry, 2001: Simulation of Arctic low-level clouds observed during the FIRE Arctic Clouds Experiment using a new bulk microphysics scheme. J. Geophys. Res., 106 , 1513915154.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp.

  • Hallet, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Han, Y., and E. R. Westwater, 1995: Remote sensing of tropospheric water and cloud liquid water by integrated ground-based sensors. J. Atmos. Oceanic Technol., 12 , 10501059.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion process due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52 , 43444366.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisen, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51 , 4575.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. J. Donner, 1990: A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47 , 18651877.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., G. J. Jenkins, and J. J. Ephraums, 1990: Climate Change:. The IPCC Scientific Assessment. Cambridge University Press, 365 pp.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., L. G. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Eds. 1995: Climate Change 1995—The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 584 pp.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36 , 156162.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of the nonhydrostatic model developed at the forecast research department of the MRI. Meteorological Institute Tech. Rep. 28, Tsubaka, Japan, 238 pp.

  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 .8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and T. Ohtake, 1973: Concentrations of ice particles in arctic stratus clouds. J. Rech. Atmos., 7 , 199207.

  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Key, J., 2002: The Cloud and Surface Parameter Retrieval (CASPR) system for polar AVHRR user’s guide, version 4.0. Space Science and Engineering Center, University of Wisconsin—Madison, Madison, WI, 69 pp.

  • Khvorostyanov, V. I., and J. A. Curry, 1999: A simple analytical model of aerosol properties with account for hygroscopic growth, Part 1, Equilibrium size spectra and CCN activity spectra. J. Geophys. Res., 104 , 21632174.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2004: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part I: Critical radius, energy, and nucleation rate. J. Atmos. Sci., 61 , 26762691.

    • Search Google Scholar
    • Export Citation
  • Kruger, S. K., Q. Fu, K. N. Liou, and H-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2003: Continued quality-control and analysis of aircraft microphysical measurements. NASA FIRE Final Rep. ACE LaRC PO L-14, 363 pp.

  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106 , 1498915014.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., B. Rockel, H. Kapitza, and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr. Phys. Atmos., 65 , 3558.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651089.

    • Search Google Scholar
    • Export Citation
  • Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cirrus. J. Atmos. Sci., 26 , 12831298.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fallspeeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Lohmann, U., N. McFarlane, L. Levkov, K. Abdella, and F. Albers, 1999: Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J. Climate, 12 , 438461.

    • Search Google Scholar
    • Export Citation
  • Lynch, A. H., W. L. Chapman, J. E. Walsh, and G. Weller, 1995: Development of a regional climate model of the western Arctic. J. Climate, 8 , 15551570.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., J. Key, C. W. Fowler, T. Nguyen, and X. Wang, 2001: Spatial and temporal variability of satellite-derived cloud and surface characteristics during FIRE–ACE. J. Geophys. Res., 106 , 1523315249.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W. K. Tao, J. Simpson, R. Penc, and S. T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of convection. J. Appl. Meteor., 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterization in an explicit model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2004: A new approach for obtaining advection profiles: Application to the SHEBA column. Mon. Wea. Rev., 132 , 687702.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62 , 36833704.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed at SHEBA using a bulk parameterization implemented into a single-column model. J. Geophys. Res., 108 .4255, doi:1029/2002JD002229.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005a: A new double-moment microphysics scheme for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62 , 16651677.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, M. D. Shupe, and P. Zuidema, 2005b: A new double-moment microphysics scheme for application in cloud and climate models. Part II: Single-column modeling of Arctic clouds. J. Atmos. Sci., 62 , 16781693.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, J. O. Pinto, and J. A. Curry, 2005c: Possible roles of ice nucleation mode and ice nuclei depletion in the extended lifetime of arctic mixed-phase clouds. Geophys. Res. Lett., 32 .L18801, doi:10.1029/2005GL023614.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of the dynamical and microphysical evolution of an isolated convective cloud—The July 19 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68 , 107128.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., J-W. Bao, and S. Michelson, 2002a: Mesoscale modeling of the wintertime boundary layer structure over the Arctic pack ice. Preprints, 15th Symp. on Boundary Layers and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., 335–338.

  • Persson, P. O. G., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002b: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107 .8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55 , 20162038.

  • Pinto, J. O., and J. A. Curry, 1995: Atmospheric convective plumes emanating from leads. 2, Microphysical and radiative processes. J. Geophys. Res., 101 , 46334642.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., and J. A. Curry, 1997: Role of radiative transfer in the modeled mesoscale development of summertime Arctic stratus. J. Geophys. Res., 102 , 1386113872.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Radke, L. F., J. F. Lyons, D. A. Hegg, and P. V. Hobbs, 1984: Airborne observations of Arctic aeorosols: characterization of Arctic haze. Geophys. Res. Lett., 11 , 393396.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rinke, A., K. Dethloff, and M. Fortmann, 2004: Regional climate effects of Arctic haze. Geophys. Res. Lett., 31 .L16202, doi:10.1029/2004GL020318.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, and S. M. Kreidenweis, 2001: Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res., 106 , 1505315063.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3d ed. Pergamon Press, 293 pp.

  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivistava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27 , 299307.

  • Serreze, M., and Coauthors, 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46 , 159207.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17 , 616628.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, S. Y. Matrasov, and A. S. Frisch, 2001: Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment. J. Geophys. Res., 106 , 1501515028.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave optical properties of water clouds. J. Atmos. Sci., 46 , 14191427.

  • Stone, R., 1997: Variations in western Arctic temperatures in response to cloud radiative and synoptic-scale influences. J. Geophys. Res., 102 , 2176921776.

    • Search Google Scholar
    • Export Citation
  • Tao, X., J. E. Walsh, and W. L. Chapman, 1996: An assessment of global climate model simulations of Arctic air temperatures. J. Climate, 9 , 10601076.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. T. Bruintjes, B. G. Brown, and F. Hage, 1997: Intercomparisons of in-flight icing algorithms: Part I: WISP94 real-time icing prediction and evaluation program. Wea. Forecasting, 12 , 878889.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and R. Rotunno, 1989: Nonlinear aspects of symmetric instability. J. Atmos. Sci., 46 , 12851299.

  • Tjernstrom, M., C. Leck, P. O. G. Persson, M. L. Jensen, S. P. Oncley, and A. Targino, 2004: The summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment 2001 (AOE-2001). Bull. Amer. Meteor. Soc., 85 , 13051321.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: The surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 255275.

  • Walsh, J. E., V. M. Kattsov, W. L. Chapman, V. Govorkova, and T. Pavlova, 2002: Comparison of Arctic climate simulations by uncoupled and coupled global models. J. Climate, 15 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, R. E. Jordan, and P. O. G. Persson, 2001: Interactions among the longwave radiation of clouds, turbulence, and snow surface temperatures in the Arctic: A model sensitivity study. J. Geophys. Res., 106 , 1532315333.

    • Search Google Scholar
    • Export Citation
  • Wei, H., W. J. Gutowski, C. J. Vorosmarty, and B. M. Fekete, 2002: Calibration and validation of a regional climate model for pan-Arctic hydrologic simulation. J. Climate, 15 , 32223236.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrasov, 2001: Analysis of integrated cloud liquid water and precipitable water vapor retrievals from microwave radiometer during SHEBA. J. Geophys. Res., 106 , 3201932030.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface properties. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55 , 26932714.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE phase III data: Comparison with observations. J. Atmos. Sci., 53 , 37103736.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31 , 768780.

  • Yum, S. S., and J. G. Hudson, 2001: Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res., 106 , 1504515052.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., U. Lohmann, and B. Lin, 2002: A new statistically based autoconversion rate parameterization for use in large-scale models. J. Geophys. Res., 107 .4750, doi:10.1029/2001JD001484.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2005: An arctic springtime mixed-phase cloud boundary layer observed during SHEBA. J. Atmos. Sci., 62 , 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2650 2313 80
PDF Downloads 408 100 8