The Multiple-Vortex Nature of Tropical Cyclogenesis

Jason A. Sippel Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Jason A. Sippel in
Current site
Google Scholar
PubMed
Close
,
John W. Nielsen-Gammon Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by John W. Nielsen-Gammon in
Current site
Google Scholar
PubMed
Close
, and
Stephen E. Allen National Weather Service Houston/Galveston, Dickinson, Texas

Search for other papers by Stephen E. Allen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the extent to which potential vorticity (PV) generation and superposition were relevant on a variety of scales during the genesis of Tropical Storm Allison. Allison formed close to shore, and the combination of continuous Doppler radar, satellite, aircraft, and surface observations allows for the examination of tropical cyclogenesis in great detail.

Preceding Allison’s genesis, PV superposition on the large scale created an environment where decreased vertical shear and increased instability, surface fluxes, and low-level cyclonic vorticity coexisted. This presented a favorable environment for meso-α-scale PV production by widespread convection and led to the formation of surface-based, meso-β-scale vortices [termed convective burst vortices (CBVs)]. The CBVs seemed to form in association with intense bursts of convection and rotated around each other within the meso-α circulation field. One CBV eventually superposed with a mesoscale convective vortex (MCV), resulting in a more concentrated surface vortex with stronger pressure gradients.

The unstable, vorticity-rich environment was also favorable for the development of even smaller, meso-γ-scale vortices that formed within the cores of deep convective cells. Several meso-γ-scale convective vortices were present in the immediate vicinity when a CBV developed, and the smaller vortices may have contributed to the formation of the CBV. The convection associated with the meso-γ vortices also fed PV into existing CBVs.

Much of the vortex behavior observed in Allison has been documented or simulated in studies of other tropical cyclones. Multiscale vortex formation and interaction may be a common aspect of many tropical cyclogenesis events.

Corresponding author address: Jason A. Sippel, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843. Email: jsipp@ariel.met.tamu.edu

Abstract

This study explores the extent to which potential vorticity (PV) generation and superposition were relevant on a variety of scales during the genesis of Tropical Storm Allison. Allison formed close to shore, and the combination of continuous Doppler radar, satellite, aircraft, and surface observations allows for the examination of tropical cyclogenesis in great detail.

Preceding Allison’s genesis, PV superposition on the large scale created an environment where decreased vertical shear and increased instability, surface fluxes, and low-level cyclonic vorticity coexisted. This presented a favorable environment for meso-α-scale PV production by widespread convection and led to the formation of surface-based, meso-β-scale vortices [termed convective burst vortices (CBVs)]. The CBVs seemed to form in association with intense bursts of convection and rotated around each other within the meso-α circulation field. One CBV eventually superposed with a mesoscale convective vortex (MCV), resulting in a more concentrated surface vortex with stronger pressure gradients.

The unstable, vorticity-rich environment was also favorable for the development of even smaller, meso-γ-scale vortices that formed within the cores of deep convective cells. Several meso-γ-scale convective vortices were present in the immediate vicinity when a CBV developed, and the smaller vortices may have contributed to the formation of the CBV. The convection associated with the meso-γ vortices also fed PV into existing CBVs.

Much of the vortex behavior observed in Allison has been documented or simulated in studies of other tropical cyclones. Multiscale vortex formation and interaction may be a common aspect of many tropical cyclogenesis events.

Corresponding author address: Jason A. Sippel, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843. Email: jsipp@ariel.met.tamu.edu

Save
  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50 , 24012426.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53 , 35283540.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129 , 18591881.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. M. Gross, 2003: Evolution of prediction models. Hurricane! Coping with Disaster: Progress and Challenges since Galveston, 1900, R. Simpson, Ed., Amer. Geophys. Union, 103–126.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16 , 219233.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 34313456.

  • Emanuel, K. A., 2003: A century of scientific progress: An evaluation. Hurricane! Coping with Disaster: Progress and Challenges since Galveston, 1900, R. Simpson, Ed., Amer. Geophys. Union, 177—204.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111144.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51 , 17801807.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96 , 669700.

  • Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmospheric Science Paper 323, Colorado State University, 121 pp. [Available from Department of Atmospheric Sciences, Colorado State University, Ft. Collins, CO 80523.].

  • Harr, P. A., R. L. Elsberry, and J. C. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124 , 26252643.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1990: On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47 , 20212031.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., C. Ronne, and M. Chaffee, 1961: Cloud patterns in Hurricane Daisy. Tellus, 13 , 830.

  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38 , 11321151.

    • Search Google Scholar
    • Export Citation
  • Menard, R. D., and J. M. Fritsch, 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117 , 12371261.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, D. Vollaro, F. Alsheimer, and H. E. Willoughby, 1998: Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55 , 26322644.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61 , 24932509.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nichols, T. A. Cram, and A. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: The rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56 , 527530.

  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47 , 30673077.

  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62 , 31513171.

    • Search Google Scholar
    • Export Citation
  • Reihl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6 , 503538.

  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125 , 13771396.

  • Rogers, R. F., and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129 , 605637.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and J. L. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea. Rev., 123 , 14651475.

  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125 , 26432661.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., B. Halverson, B. S. Ferrier, W. A. Peterson, R. H. Simpson, R. Blakeslee, and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67 , 1535.

    • Search Google Scholar
    • Export Citation
  • Spratt, S. M., D. W. Sharp, P. Welsh, A. Sandrik, F. Alsheimer, and C. Paxton, 1997: A WSR-88D assessment of tropical cyclone outer rainband tornadoes. Wea. Forecasting, 12 , 479501.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., and S. W. Lyons, 1996: A WSR-88D radar view of Tropical Cyclone Ed. Wea. Forecasting, 11 , 115132.

  • Stossmeister, G. J., and G. M. Barnes, 1992: The development of a second circulation center within Tropical Storm Isabel (1985). Mon. Wea. Rev., 120 , 685697.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47 , 265274.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 906 521 29
PDF Downloads 296 88 11