• Akyildiz, V., 1985: Systematic errors in the behaviour of cyclones in the ECMWF operational models. Tellus, 37A , 297308.

  • Anderson, D., K. I. Hodges, and B. J. Hoskins, 2003: Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mon. Wea. Rev., 131 , 565573.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1954: The problem of tropical hurricanes. Quart. J. Roy. Meteor. Soc., 80 , 131164.

  • Bishop, C. H., and A. J. Thorpe, 1994a: Frontal wave stability during moist deformation frontogenesis. Part I: Linear wave dynamics. J. Atmos. Sci., 51 , 852873.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and A. J. Thorpe, 1994b: Frontal wave stability during moist deformation frontogenesis. Part II: The suppression of nonlinear wave development. J. Atmos. Sci., 51 , 874888.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3 , 318.

    • Search Google Scholar
    • Export Citation
  • Blender, R., K. Fraedrich, and F. Lunkheit, 1997: Identification of cyclone track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123 , 727741.

    • Search Google Scholar
    • Export Citation
  • Chang, E., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50 , 9991015.

  • Chang, E., and I. Orlanski, 1994: On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51 , 38233828.

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4 , 135163.

  • Cox, D. R., and V. Isham, 1980: Point Processes. Chapman and Hall/CRC, 188 pp.

  • Dacre, H., 2005: Frontal waves. Ph.D. thesis, University of Reading, 134 pp.

  • Deveson, A. C. L., K. A. Browning, and T. D. Hewson, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128 , 93117.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Eliassen, A., 1966: Motions of intermediate scales: Fronts and cyclones. Advances in Earth Science, E. D. Hurley, Ed., MIT Press, 111–138.

    • Search Google Scholar
    • Export Citation
  • Goldfarb, D., 1969: Extension of Davidon’s variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math., 17 , 739764.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122 , 25732586.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123 , 29142932.

  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124 , 29142932.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adoptive constraints for feature tracking. Mon. Wea. Rev., 127 , 13621373.

  • Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131 , 20122037.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the northern hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Klein, W. H., 1957: Principal tracks and mean frequencies of cyclones and anti-cyclones in the Northern Hemisphere. Research Paper 40, U.S. Weather Bureau, Washington, DC, 60 pp.

  • Lim, E-P., and I. Simmonds, 2002: Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon. Wea. Rev., 130 , 21882209.

    • Search Google Scholar
    • Export Citation
  • Mallet, I., J. P. Cammas, P. Mascart, and P. Bechtold, 1999: Effects of cloud diabatic heating on the early development of the FASTEX IOP17 cyclone. Quart. J. Roy. Meteor. Soc., 125 , 34393467.

    • Search Google Scholar
    • Export Citation
  • McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Models. 2d ed. Chapman and Hall, 511 pp.

  • Munich Re, 2002: Winter storms in Europe (II). Analysis of 1999 losses and loss potentials. Rep. 302-03109, 72 pp. [Available from Münchener Rückversicherungs-Gesellschaft, Königinstrasse 107, 80802 München, Germany.].

  • Murray, R., and S. M. Daniels, 1953: Transverse flow at entrance and exit to jet streams. Quart. J. Roy. Meteor. Soc., 79 , 236241.

  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust. Meteor. Mag., 39 , 155166.

    • Search Google Scholar
    • Export Citation
  • Namias, J., and P. F. Clapp, 1949: Confluence theory of the high tropospheric jet stream. J. Meteor., 6 , 330336.

  • Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50 , 212225.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. International Geophysics Series, Vol. 13, Academic Press, 603 pp.

    • Search Google Scholar
    • Export Citation
  • Panagiotopoulos, F., M. Shahgedanova, and D. B. Stephenson, 2002: A review of Northern Hemisphere wintertime teleconnection patterns. J. Phys. IV, 12 , 2747.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1998: Secondary frontal waves in the North Atlantic region: A dynamical perspective of current ideas. Quart. J. Roy. Meteor. Soc., 124 , 829856.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Weather Analysis and Forecasting. Vol. 1, 2d ed., McGraw-Hill, 428 pp.

  • Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97 , 457482.

  • Reed, R. J., A. Hollingsworth, W. A. Heckley, and F. Delsol, 1986: An evaluation of the performance of the ECMWF operational forecasting system in analyzing and forecasting tropical easterly wave disturbances. Part I: Synoptic investigation. ECMWF Tech. Rep. 58, 96 pp.

  • Renfrew, I. A., A. J. Thorpe, and C. Bishop, 1997: The role of environmental flow in the development of secondary frontal cyclones. Quart. J. Roy. Meteor. Soc., 123 , 16531676.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112 , 15771589.

  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10 , 16351647.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “Bomb.”. Mon. Wea. Rev., 108 , 15891606.

  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33 , 123.

  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10 , 453464.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13 , 873885.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., R. J. Murray, and R. M. Leighton, 1999: A refinement of cyclone tracking methods with data from FROST. Aust. Meteor. Mag, June Special Edition, 35–49.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36 , 12391254.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122 , 22392256.

  • Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J. Atmos. Sci., 47 , 23172336.

  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. N. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107 , 682703.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 796 422 18
PDF Downloads 656 321 17

Serial Clustering of Extratropical Cyclones

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 Environmental Systems Science Centre, University of Reading, Reading, United Kingdom
Restricted access

Abstract

The clustering in time (seriality) of extratropical cyclones is responsible for large cumulative insured losses in western Europe, though surprisingly little scientific attention has been given to this important property. This study investigates and quantifies the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach. A possible mechanism for serial clustering is the time-varying effect of the large-scale flow on individual cyclone tracks. Another mechanism is the generation by one “parent” cyclone of one or more “offspring” through secondary cyclogenesis. A long cyclone-track database was constructed for extended October–March winters from 1950 to 2003 using 6-h analyses of 850-mb relative vorticity derived from the NCEP–NCAR reanalysis. A dispersion statistic based on the variance-to-mean ratio of monthly cyclone counts was used as a measure of clustering. It reveals extensive regions of statistically significant clustering in the European exit region of the North Atlantic storm track and over the central North Pacific. Monthly cyclone counts were regressed on time-varying teleconnection indices with a log-linear Poisson model. Five independent teleconnection patterns were found to be significant factors over Europe: the North Atlantic Oscillation (NAO), the east Atlantic pattern, the Scandinavian pattern, the east Atlantic–western Russian pattern, and the polar–Eurasian pattern. The NAO alone is not sufficient for explaining the variability of cyclone counts in the North Atlantic region and western Europe. Rate dependence on time-varying teleconnection indices accounts for the variability in monthly cyclone counts, and a cluster process did not need to be invoked.

Corresponding author address: Pascal Mailier, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: p.j.a.mailier@reading.ac.uk

Abstract

The clustering in time (seriality) of extratropical cyclones is responsible for large cumulative insured losses in western Europe, though surprisingly little scientific attention has been given to this important property. This study investigates and quantifies the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach. A possible mechanism for serial clustering is the time-varying effect of the large-scale flow on individual cyclone tracks. Another mechanism is the generation by one “parent” cyclone of one or more “offspring” through secondary cyclogenesis. A long cyclone-track database was constructed for extended October–March winters from 1950 to 2003 using 6-h analyses of 850-mb relative vorticity derived from the NCEP–NCAR reanalysis. A dispersion statistic based on the variance-to-mean ratio of monthly cyclone counts was used as a measure of clustering. It reveals extensive regions of statistically significant clustering in the European exit region of the North Atlantic storm track and over the central North Pacific. Monthly cyclone counts were regressed on time-varying teleconnection indices with a log-linear Poisson model. Five independent teleconnection patterns were found to be significant factors over Europe: the North Atlantic Oscillation (NAO), the east Atlantic pattern, the Scandinavian pattern, the east Atlantic–western Russian pattern, and the polar–Eurasian pattern. The NAO alone is not sufficient for explaining the variability of cyclone counts in the North Atlantic region and western Europe. Rate dependence on time-varying teleconnection indices accounts for the variability in monthly cyclone counts, and a cluster process did not need to be invoked.

Corresponding author address: Pascal Mailier, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. Email: p.j.a.mailier@reading.ac.uk

Save