• Bermejo, R., and J. Conde, 2002: A conservative quasi-monotone semi-Lagrangian scheme. Mon. Wea. Rev., 130 , 423430.

  • Carpenter, R. L., K. K. Droegemeier, P. R. Woodward, and C. E. Hane, 1990: Application of the Piecewise Parabolic Method (PPM) to meteorological modeling. Mon. Wea. Rev., 118 , 586612.

    • Search Google Scholar
    • Export Citation
  • Clappier, A., 1998: A correction method for use in multidimensional time-splitting advection algorithms: Application to two- and three-dimensional transport. Mon. Wea. Rev., 126 , 232242.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. 1st ed. Springer-Verlag, 465 pp.

  • Easter, R. C., 1993: Two modified versions of Bott’s positive definite numerical advection scheme. Mon. Wea. Rev., 121 , 297304.

  • Leonard, B. P., 1991: The ULTIMATE conservative difference scheme applied to one-dimensional advection. Comput. Meth. Appl. Mech. Eng., 88 , 1774.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., A. P. Lock, and M. K. MacVean, 1996: Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon. Wea. Rev., 124 , 25882606.

    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., and R. J. Purser, 1995: Three dimensional mass-conserving semi-Lagrangian schemes employing forward trajectories. Mon. Wea. Rev., 123 , 25512566.

    • Search Google Scholar
    • Export Citation
  • Leveque, R. J., 1996: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal., 33 , 627665.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124 , 20462070.

  • Nair, R. D., and B. Machenhauer, 2002: The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Mon. Wea. Rev., 130 , 649667.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1989: Comment on “A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes.”. Mon. Wea. Rev., 117 , 26262632.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and J. A. Pudykiewicz, 1992: A class of semi-Lagrangian approximations for fluids. J. Atmos. Sci., 49 , 20822096.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Cote, 1991: Semi-Lagrangian integration schemes for atmospheric models: A review. Mon. Wea. Rev., 119 , 22062223.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and C. Bretherton, 1996: A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow. J. Comput. Phys., 129 , 284295.

    • Search Google Scholar
    • Export Citation
  • Strang, G., 1968: On the construction and composition of difference schemes. SIAM J. Numer. Anal., 5 , 506517.

  • Thuburn, J., 1996: Multidimensional flux-limited advection schemes. J. Comput. Phys., 123 , 7483.

  • Walcek, C. J., 2000: Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection. J. Geophys. Res., 105 , 93359348.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 664 98 3
PDF Downloads 195 109 8

Positive-Definite and Monotonic Limiters for Unrestricted-Time-Step Transport Schemes

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

General positive-definite and monotonic limiters are described for use with unrestricted-Courant-number flux-form transport schemes. These limiters are tested using a time-split multidimensional transport scheme. The importance of minimizing the splitting errors associated with the time-split operator and of the consistency between the transport scheme and the discrete continuity equation is demonstrated.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: William C. Skamarock, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: skamaroc@ucar.edu

Abstract

General positive-definite and monotonic limiters are described for use with unrestricted-Courant-number flux-form transport schemes. These limiters are tested using a time-split multidimensional transport scheme. The importance of minimizing the splitting errors associated with the time-split operator and of the consistency between the transport scheme and the discrete continuity equation is demonstrated.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: William C. Skamarock, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: skamaroc@ucar.edu

Save