• Buizza, R., and T. N. Palmer, 1995: The singular vector structure of the atmospheric global circulation. J. Atmos. Sci., 52 , 14341456.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132 , 14341447.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87 , 3346.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Montly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, E. C. Williford, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensembles. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Krishnamurty, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13 , 41964216.

    • Search Google Scholar
    • Export Citation
  • Mylne, K. R., R. E. Evans, and R. T. Clark, 2002: Multi-model multi-analysis ensembles in quasi-operational medium-range forecasting. Quart. J. Roy. Meteor. Soc., 128 , 361384.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal to interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., U. Lall, and S. E. Zebiak, 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130 , 17921811.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127 , 24732489.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Vitart, F., 2004: Monthly forecasting at ECMWF. Mon. Wea. Rev., 132 , 27612779.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 81 2
PDF Downloads 48 16 0

Improving Week-2 Forecasts with Multimodel Reforecast Ensembles

View More View Less
  • 1 NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado
  • | 2 Seasonal Forecasting Group, ECMWF, Reading, United Kingdom
Restricted access

Abstract

It has recently been demonstrated that model output statistics (MOS) computed from a long retrospective dataset of ensemble “reforecasts” from a single model can significantly improve the skill of probabilistic week-2 forecasts (with the same model). In this study the technique is extended to a multimodel reforecast dataset consisting of forecasts from ECMWF and NCEP global models. Even though the ECMWF model is more advanced than the version of the NCEP model used (it has more than double the horizontal resolution and is about five years newer), the forecasts produced by the multimodel MOS technique are more skillful than those produced by the MOS technique applied to either the NCEP or ECMWF forecasts alone. These results demonstrate that the MOS reforecast approach yields benefits for week-2 forecasts that are just as large for high-resolution state-of-the-art models as they are for relatively low resolution out-of-date models. Furthermore, operational forecast centers can benefit by sharing both retrospective reforecast datasets and real-time forecasts.

Corresponding author address: Jeffrey Whitaker, NOAA–CIRES Climate Diagnostics Center, 325 Broadway, R/CDC1, Boulder, CO 80305-3328. Email: jeffrey.s.whitaker@noaa.gov

Abstract

It has recently been demonstrated that model output statistics (MOS) computed from a long retrospective dataset of ensemble “reforecasts” from a single model can significantly improve the skill of probabilistic week-2 forecasts (with the same model). In this study the technique is extended to a multimodel reforecast dataset consisting of forecasts from ECMWF and NCEP global models. Even though the ECMWF model is more advanced than the version of the NCEP model used (it has more than double the horizontal resolution and is about five years newer), the forecasts produced by the multimodel MOS technique are more skillful than those produced by the MOS technique applied to either the NCEP or ECMWF forecasts alone. These results demonstrate that the MOS reforecast approach yields benefits for week-2 forecasts that are just as large for high-resolution state-of-the-art models as they are for relatively low resolution out-of-date models. Furthermore, operational forecast centers can benefit by sharing both retrospective reforecast datasets and real-time forecasts.

Corresponding author address: Jeffrey Whitaker, NOAA–CIRES Climate Diagnostics Center, 325 Broadway, R/CDC1, Boulder, CO 80305-3328. Email: jeffrey.s.whitaker@noaa.gov

Save