• Borys, R. D., and M. A. Wetzel, 1997: Storm Peak Laboratory: A research, teaching, and service facility for the atmospheric sciences. Bull. Amer. Meteor. Soc., 78 , 21152123.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev., 117 , 23052324.

    • Search Google Scholar
    • Export Citation
  • Geiger, R., R. H. Aron, and P. Todhunter, 1995: The Climate near the Ground. 5th ed. Vieweg, 528 pp.

  • Grell, F. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, 122 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307.].

  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Environ., 26A , 965981.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., N. L. Seaman, and G. A. Gayno, 2000: Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study. J. Appl. Meteor., 39 , 412426.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 1997: Local and remote effects of mountains on weather: Research needs and opportunities. Bull. Amer. Meteor. Soc., 78 , 877892.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1982: Breakup of temperature inversions in deep mountain valleys. Part I: Observations. J. Appl. Meteor., 21 , 270289.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J. Appl. Meteor., 38 , 11031117.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia Basin. Wea. Forecasting, 16 , 432447.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., B. Pospichal, S. Eisenbach, P. Weihs, C. B. Clements, R. Steinacker, E. Mursch-Radlgruber, and M. Dorninger, 2004: Inversion breakup in small Rocky Mountain and Alpine basins. J. Appl. Meteor., 43 , 10691082.

    • Search Google Scholar
    • Export Citation
  • Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor., 40 , 192209.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2002: An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography. Mon. Wea. Rev., 130 , 14231432.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2003: The impact of upstream blocking, drainage flow, and the geostrophic pressure gradient on the persistence of cold-air pools. Quart. J. Roy. Meteor. Soc., 129 , 117137.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2005a: Formation of extreme cold-air pools in elevated sinkholes: An idealized numerical process study. Mon. Wea. Rev., 133 , 925941.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2005b: Dynamical aspects of wintertime cold-air pools in an Alpine valley system. Mon. Wea. Rev., 133 , 27212740.

  • Zhong, S., C. D. Whiteman, X. Bian, W. J. Shaw, and J. M. Hubbe, 2001: Meteorological processes affecting the evolution of a wintertime cold air pool in the Columbia Basin. Mon. Wea. Rev., 129 , 26002613.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 158 75 6
PDF Downloads 94 52 4

Maintenance of a Mountain Valley Cold Pool: A Numerical Study

View More View Less
  • 1 Desert Research Institute, Reno, Nevada
Restricted access

Abstract

A persistent cold-air pool in the Yampa Valley of northwestern Colorado was simulated with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The observed cold-air pool, which was identified by temperature measurements along a line of surface stations ascending the eastern side of the valley, remained in place throughout the day of 10 January 2004. The baseline simulation with horizontal resolution of 1 km, which is close to the resolution of operational regional mesoscale model forecasts, neither matched the strength of the observed cold-air pool nor retained the cold pool throughout the day. Varying the PBL parameterization, increasing the vertical resolution, and increasing the model spinup time did not significantly improve the results. However, the inclusion of snow cover, increased horizontal resolution, and an improved treatment of horizontal diffusion did have a sizable effect on the forecast quality. The snow cover in the baseline simulation was essential for preventing the diurnal heating from eroding the cold pool, but was only sufficient to produce a nearly isothermal temperature structure within the valley, largely because of an increased reflection of solar radiation. The increase of horizontal resolution to 333 and 111 m resulted in a stronger cold-air pool and its retention throughout the day. In addition to improving the resolution of flow features in steep terrain, resulting in, for example, less drainage out of the valley, the increase in horizontal resolution led to a better forecast because of a reduced magnitude of horizontal diffusion calculated along the terrain-following model surfaces. Calculating horizontal diffusion along the constant height levels had a beneficial impact on the quality of the simulations, producing effects similar to those achieved by increasing the horizontal resolution, but at a fraction of the computational cost.

Corresponding author address: Brian J. Billings, Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512. Email: billings@dri.edu

Abstract

A persistent cold-air pool in the Yampa Valley of northwestern Colorado was simulated with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The observed cold-air pool, which was identified by temperature measurements along a line of surface stations ascending the eastern side of the valley, remained in place throughout the day of 10 January 2004. The baseline simulation with horizontal resolution of 1 km, which is close to the resolution of operational regional mesoscale model forecasts, neither matched the strength of the observed cold-air pool nor retained the cold pool throughout the day. Varying the PBL parameterization, increasing the vertical resolution, and increasing the model spinup time did not significantly improve the results. However, the inclusion of snow cover, increased horizontal resolution, and an improved treatment of horizontal diffusion did have a sizable effect on the forecast quality. The snow cover in the baseline simulation was essential for preventing the diurnal heating from eroding the cold pool, but was only sufficient to produce a nearly isothermal temperature structure within the valley, largely because of an increased reflection of solar radiation. The increase of horizontal resolution to 333 and 111 m resulted in a stronger cold-air pool and its retention throughout the day. In addition to improving the resolution of flow features in steep terrain, resulting in, for example, less drainage out of the valley, the increase in horizontal resolution led to a better forecast because of a reduced magnitude of horizontal diffusion calculated along the terrain-following model surfaces. Calculating horizontal diffusion along the constant height levels had a beneficial impact on the quality of the simulations, producing effects similar to those achieved by increasing the horizontal resolution, but at a fraction of the computational cost.

Corresponding author address: Brian J. Billings, Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512. Email: billings@dri.edu

Save