Impacts of Waves and Sea Spray on Midlatitude Storm Structure and Intensity

Weiqing Zhang Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, and Department of Engineering Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Weiqing Zhang in
Current site
Google Scholar
PubMed
Close
,
William Perrie Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, and Department of Engineering Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by William Perrie in
Current site
Google Scholar
PubMed
Close
, and
Weibiao Li Department of Atmospheric Sciences, Zhongshan University, Guangzhou, China

Search for other papers by Weibiao Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A coupled atmosphere–wave–sea spray model system is used to evaluate the combined impacts of spray evaporation and wave drag on midlatitude storms. The focus of this paper is on the role of air–sea fluxes on storm intensity and development, and related impacts on the structure of the atmospheric boundary layer. The composite model system consists of the Canadian Mesoscale Compressible Community atmospheric model coupled to the operational wave model WAVEWATCH III, and a recent bulk parameterization for heat fluxes due to sea spray. The case studies are extratropical Hurricane Earl (in 1998) and two intense winter storms from 2000 and 2002, hereafter denoted “superbomb” and “bomb,” respectively. The results show that sea spray tends to intensify storms, whereas wave-related drag tends to weaken storms. The mechanisms by which spray and wave-related drag can influence storm intensity are quite different. When wind speeds are high and sea surface temperatures warm, spray can significantly increase the surface heat fluxes. By comparison, momentum fluxes related to wave drag are important over regions of the storm where young, newly generated waves are prevalent, for example during the rapid development phase of the storm. These momentum fluxes decrease in areas where the storm waves reach maturity. The collective influence of spray and waves on storm intensity depends on their occurrence in the early stages of a storm’s rapid intensification phase, and their spatial distribution with respect to the storm center. Moreover, for the case of the superbomb, a potential vorticity framework is used to show the relative importance of these surface flux impacts compared with baroclinic processes.

Corresponding author address: Dr. W. Perrie, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth NS B2Y 4A2, Canada. Email: perriew@dfo-mpo.gc.ca

Abstract

A coupled atmosphere–wave–sea spray model system is used to evaluate the combined impacts of spray evaporation and wave drag on midlatitude storms. The focus of this paper is on the role of air–sea fluxes on storm intensity and development, and related impacts on the structure of the atmospheric boundary layer. The composite model system consists of the Canadian Mesoscale Compressible Community atmospheric model coupled to the operational wave model WAVEWATCH III, and a recent bulk parameterization for heat fluxes due to sea spray. The case studies are extratropical Hurricane Earl (in 1998) and two intense winter storms from 2000 and 2002, hereafter denoted “superbomb” and “bomb,” respectively. The results show that sea spray tends to intensify storms, whereas wave-related drag tends to weaken storms. The mechanisms by which spray and wave-related drag can influence storm intensity are quite different. When wind speeds are high and sea surface temperatures warm, spray can significantly increase the surface heat fluxes. By comparison, momentum fluxes related to wave drag are important over regions of the storm where young, newly generated waves are prevalent, for example during the rapid development phase of the storm. These momentum fluxes decrease in areas where the storm waves reach maturity. The collective influence of spray and waves on storm intensity depends on their occurrence in the early stages of a storm’s rapid intensification phase, and their spatial distribution with respect to the storm center. Moreover, for the case of the superbomb, a potential vorticity framework is used to show the relative importance of these surface flux impacts compared with baroclinic processes.

Corresponding author address: Dr. W. Perrie, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth NS B2Y 4A2, Canada. Email: perriew@dfo-mpo.gc.ca

Save
  • Adamson, D. S., S. E. Belcher, B. J. Hoskins, and R. S. Plant, 2006: Boundary layer friction in mid-latitude cyclones. Quart. J. Roy. Meteor. Soc., 132 , 101124.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1992: Sea spray and the turbulent air–sea heat fluxes. J. Geophys. Res., 97 , 1142911441.

  • Andreas, E. L., 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52 , 852862.

  • Andreas, E. L., 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28 , 21752184.

  • Andreas, E. L., 2003: An algorithm to predict the turbulent air–sea fluxes in high-wind, spray conditions. Preprints, 12th Conf. on Interaction of Sea and Atmosphere, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, 3.4.

  • Andreas, E. L., 2004: Spray stress revisited. J. Phys. Oceanogr., 34 , 14291440.

  • Andreas, E. L., and J. DeCosmo, 1999: Sea spray production and influence on air–sea heat and moisture fluxes over the open ocean. Air–Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58 , 37413751.

  • Andreas, E. L., and J. DeCosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103 , 303333.

    • Search Google Scholar
    • Export Citation
  • Bao, J-W., J. M. Wilczak, J-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128 , 21902210.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128 , 917946.

    • Search Google Scholar
    • Export Citation
  • Benoit, R., M. Desgagne, P. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-implicit semi-Lagrangian wide-band atmospheric model suited for fine-scale process studies and simulation. Mon. Wea. Rev., 125 , 23822415.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D. V., and V. K. Makin, 1991: Models of the wave boundary layer. Bound.-Layer Meteor., 56 , 8399.

  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81 , 639640.

  • Chouinard, C., J. Mailhot, and A. Mitchell, 1994: The Canadian Regional Data Assimilation System: Operational and research applications. Mon. Wea. Rev., 122 , 13061325.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119 , 19291953.

  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) Results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Desjardins, S., J. Mailhot, and R. Lalbeharry, 2000: Examination of the impact of a coupled atmospheric and ocean wave system. Part I: Atmospheric aspects. J. Phys. Oceanogr., 30 , 385401.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23 , 21432149.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31 .L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., 1995: Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus, 47A , 766778.

  • Doyle, J. D., 2002: Coupled atmosphere–ocean wave simulations under high wind conditions. Mon. Wea. Rev., 130 , 30873099.

  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108 .8062, doi:10.1029/2000JC000715.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., S. Anquentin, P. G. Mestayer, and J. F. Sini, 1996: Spray droplet modeling: 2. An interactive Eulerian–Lagrangian model of evaporating spray droplets. J. Geophys. Res., 101 , 12791293.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401 , 665669.

  • Emanuel, K. A., 2003: A similarity hypothesis for air–sea exchange at extreme wind speeds. J. Atmos. Sci., 60 , 14201428.

  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on the surface energy transports over the ocean. Global Atmos. Ocean Syst., 2 , 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1979: An Introduction to Dynamic Meteorology. Academic Press, 391 pp.

  • Hoskins, B. J., M. E. Mcintyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 101 , 637655.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., D. L. Zhang, and J. Gyakum, 1995: A diagnostic analysis of the superstorm of March 1993. Mon. Wea. Rev., 123 , 17401761.

  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr., 19 , 745754.

  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21 , 16311642.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1997: Does wind stress depend on sea-state or not? A statistical error analysis of HEXMAX data. Bound.-Layer Meteor., 83 , 479503.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., J. D. Doyle, J. Bidlot, B. Hansen, L. Isaksen, and P. Viterbo, 2002: Impact and feedback of ocean waves on the atmosphere. Atmosphere–Ocean Interactions, Vol. I, W. Perrie, Ed., Advances in Fluid Mechanics, Vol. 33, WIT Press, 155–198.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kepert, J. D., C. W. Fairall, and J-W. Bao, 1999: Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air–Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer Academic, 363–410.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modeling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., P. A. E. M. Janssen, V. Makin, and W. Oost, 1998: On the sea state dependence of the Charnock parameter. Global Atmos. Ocean Syst., 5 , 367388.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., R. J. Reed, and S. Low-Nam, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119 , 457476.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Lionello, P., P. Malguzzi, and A. Buzzi, 1998: Coupling between the atmospheric circulation and ocean wave field: An idealized case. J. Phys. Oceanogr., 28 , 161177.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 1998: Air–sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res., 103 , 11371152.

  • Makin, V. K., and C. Mastenbroek, 1996: Impact of waves on air–sea exchange of sensible heat and momentum. Bound.-Layer Meteor., 79 , 279300.

    • Search Google Scholar
    • Export Citation
  • Meirink, J. F., and V. K. Makin, 2001: The impact of sea spray evaporation in a numerical weather prediction model. J. Atmos. Sci., 58 , 36263638.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and M. K. Yau, 2001: Sensitivity testing of extratropical transitions using potential vorticity inversions to modify initial conditions: Hurricane Earl case study. Mon. Wea. Rev., 129 , 16171636.

    • Search Google Scholar
    • Export Citation
  • Moon, I-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61 , 23342348.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., and L. M. Wang, 1995: A coupling mechanism for wind and waves. J. Phys. Oceanogr., 25 , 615630.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 , 279283.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficient: The HEXOS results. Bound.-Layer Meteor., 60 , 109142.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. A., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124 , 849874.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2002: Alleviating the garden sprinkler effect in wind wave models. Ocean Modell., 4 , 269289.

  • Tolman, H. L., and D. V. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26 , 24972518.

  • Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The impact of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129 , 24812500.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and W. Perrie, 2001: Feedback mechanisms for the atmosphere and ocean surface. Bound.-Layer Meteor., 100 , 321348.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 100 8
PDF Downloads 104 49 4