The Sensitivity of Simulated Convective Storms to Variations in Prescribed Single-Moment Microphysics Parameters that Describe Particle Distributions, Sizes, and Numbers

Charles Cohen Universities Space Research Association, Huntsville, Alabama

Search for other papers by Charles Cohen in
Current site
Google Scholar
PubMed
Close
and
Eugene W. McCaul Jr. Universities Space Research Association, Huntsville, Alabama

Search for other papers by Eugene W. McCaul Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sensitivity of cloud-scale simulations of deep convection to variations in prescribed microphysics parameters is studied, using the single-moment scheme in the Regional Atmospheric Modeling System (RAMS) model. Realistic changes were made to the shape parameters in the gamma distributions of the diameters of precipitating hydrometeors and of cloud droplets, in the number concentration of cloud droplets, and in the mean size of the hail and graupel. Simulations were performed with two initial soundings that are identical except for their temperature. The precipitation rate at the ground is not very sensitive to changes in the value of the shape parameter used for all precipitating hydrometeors (rain, hail, graupel, snow, and aggregates) or to the mean size of the hail and graupel, owing to counteracting effects. For example, with a larger shape parameter value, there is a greater production of precipitation by collection of cloud water, but also a larger rate of evaporation of the liquid precipitation. However, with a larger shape parameter value, the greater production of precipitation by collection and the increased evaporation result in more low-level cooling by the downdraft. Specifying larger hail and graupel results in less low-level cooling by the downdraft. The simulation with the cold initial sounding showed a change in storm propagation velocity when the specified sizes of hail and graupel were increased, but this did not occur when the warm initial sounding was used. With a larger shape parameter for cloud water or with a larger number concentration of cloud droplets, there is less autoconversion and less collection of cloud water and, consequently, much less precipitation at the ground and denser cirrus anvils. While the number concentration of cloud droplets can be forecast in some models with parameterized microphysics, at present the shape parameter for cloud water cannot and must, therefore, be carefully selected.

Corresponding author address: Charles Cohen, Universities Space Research Association, 320 Sparkman Dr., Huntsville, AL 35805. Email: cohen@usra.edu

Abstract

The sensitivity of cloud-scale simulations of deep convection to variations in prescribed microphysics parameters is studied, using the single-moment scheme in the Regional Atmospheric Modeling System (RAMS) model. Realistic changes were made to the shape parameters in the gamma distributions of the diameters of precipitating hydrometeors and of cloud droplets, in the number concentration of cloud droplets, and in the mean size of the hail and graupel. Simulations were performed with two initial soundings that are identical except for their temperature. The precipitation rate at the ground is not very sensitive to changes in the value of the shape parameter used for all precipitating hydrometeors (rain, hail, graupel, snow, and aggregates) or to the mean size of the hail and graupel, owing to counteracting effects. For example, with a larger shape parameter value, there is a greater production of precipitation by collection of cloud water, but also a larger rate of evaporation of the liquid precipitation. However, with a larger shape parameter value, the greater production of precipitation by collection and the increased evaporation result in more low-level cooling by the downdraft. Specifying larger hail and graupel results in less low-level cooling by the downdraft. The simulation with the cold initial sounding showed a change in storm propagation velocity when the specified sizes of hail and graupel were increased, but this did not occur when the warm initial sounding was used. With a larger shape parameter for cloud water or with a larger number concentration of cloud droplets, there is less autoconversion and less collection of cloud water and, consequently, much less precipitation at the ground and denser cirrus anvils. While the number concentration of cloud droplets can be forecast in some models with parameterized microphysics, at present the shape parameter for cloud water cannot and must, therefore, be carefully selected.

Corresponding author address: Charles Cohen, Universities Space Research Association, 320 Sparkman Dr., Huntsville, AL 35805. Email: cohen@usra.edu

Save
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303 , 13371345.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs, 1984: Collection and coalescence efficiencies for accretion. J. Geophys. Res., 89 , 71657169.

  • Beard, K. V., R. I. Durkee, and H. T. Ochs III, 2002: Coalescence efficiency measurements for minimally charged cloud drops. J. Atmos. Sci., 59 , 233243.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteor., 42 , 652660.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43 , 461475.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004b: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21 , 584598.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G-J. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19 , 633645.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. A. Maddox, 1992: On the use of mesoscale and cloud-scale models in operational forecasting. Wea. Forecasting, 7 , 120132.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15 , 6179.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24 , 10591067.

    • Search Google Scholar
    • Export Citation
  • Costa, A. A., C. J. de Oliveira, J. C. P. de Oliveira, and A. J. da Costa Sampaio, 2000: Microphysical observations of warm cumulus clouds in Ceara, Brazil. Atmos. Res., 54 , 167199.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2004: New directions: The growing urban heat and pollution “island” effect—Impact on chemistry and climate. Atmos. Environ., 38 , 35393540.

    • Search Google Scholar
    • Export Citation
  • Curic, M., and J. Janc, 1997: On the sensitivity of hail accretion rates in numerical modeling. Tellus, 49A , 100107.

  • Eagan, R. C., P. V. Hobbs, and L. F. Radke, 1974a: Particle emissions from a large Kraft paper mill and their effects on the microstructure of warm clouds. J. Appl. Meteor., 13 , 535552.

    • Search Google Scholar
    • Export Citation
  • Eagan, R. C., P. V. Hobbs, and L. F. Radke, 1974b: Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires. J. Appl. Meteor., 13 , 553557.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., D. J. Stensrud, and K. C. Crawford, 2002a: Ensemble cloud model applications to forecasting thunderstorms. J. Appl. Meteor., 41 , 363383.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., D. J. Stensrud, and K. C. Crawford, 2002b: Explicit cloud-scale models for operational forecasts: A note of caution. Wea. Forecasting, 17 , 873884.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., S. J. Weiss, and P. C. Banacos, 2003: Operational ensemble cloud model forecasts: Some preliminary results. Wea. Forecasting, 18 , 953964.

    • Search Google Scholar
    • Export Citation
  • Federer, B., and A. Waldvogel, 1975: Hail and raindrop size distributions from a Swiss multicell storm. J. Appl. Meteor., 14 , 9197.

  • Feingold, G., R. L. Walko, B. Stevens, and W. R. Cotton, 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48 , 505528.

    • Search Google Scholar
    • Export Citation
  • Fraile, R., A. Castro, L. Lopez, J. L. Sanchez, and C. Palencia, 2003: The influence of melting on hailstone size distribution. Atmos. Res., 67–68 , 203213.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and C. Cohen, 1985: Properties of tropical cloud ensembles estimated using a cloud model and an observed updraft population. J. Atmos. Sci., 42 , 19111928.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53 , 16491662.

  • Giaiotti, D., E. Gianesini, and F. Stel, 2001: Heuristic considerations pertaining to hailstone size distributions in the plain of Friuli-Venezia Giulia. Atmos. Res., 57 , 269288.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004a: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132 , 26102627.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., S. C. van den Heever, J. M. Straka, R. Wilhelmson, W. R. Cotton, and E. N. Rasmussen, 2004b: Constant slope or constant intercept? The impact on precipitation using single-moment microphysics. 14th Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Commission on Clouds and Precipitation, 1500–1503. [Available online at http://www.atmos.uiuc.edu/~gilmore1/14ICCP/GVSWCR.pdf.].

  • Glickman, T. S., 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc., 855 pp.

  • Khain, A., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61 , 29833001.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, and I. Sednev, 1999: Some effects of cloud–aerosol interaction on cloud microphysics structure and precipitation formation: Numerical experiments with a spectral microphysics cloud ensemble model. Atmos. Res., 52 , 195220.

    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55 , 159224.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131 , 26392663.

    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., and E. W. McCaul Jr., 2004: The motion of simulated convective storms as a function of basic environmental parameters. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 8A.7.

  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier, 2004: Reply. J. Appl. Meteor., 43 , 962965.

  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61 , 15391548.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005a: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133 , 4458.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005b: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CaPE rain event with a squall line. Mon. Wea. Rev., 133 , 5971.

    • Search Google Scholar
    • Export Citation
  • Martinez, D., and E. G. Gori, 1999: Raindrop size distributions in convective clouds over Cuba. Atmos. Res., 52 , 221239.

  • McCaul Jr., E. W., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130 , 17221748.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr., E. W., C. Cohen, and C. Kirkpatrick, 2005: The sensitivity of simulated storm structure, intensity, and precipitation efficiency to the temperature at the lifted condensation level. Mon. Wea. Rev., 133 , 30153037.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W-K. Tao, J. Simpson, R. Penc, and S-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62 , 30653081.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57 , 295311.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong, 1996: Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53 , 29522966.

    • Search Google Scholar
    • Export Citation
  • Nzeukou, A., H. Sauvageot, A. D. Ochou, C. Mouhamed, and F. Kebe, 2004: Raindrop size distribution and radar parameters at Cape Verde. J. Appl. Meteor., 43 , 90105.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Roelofs, G-J., and S. Jongen, 2004: A model study of the influence of aerosol size and chemical properties on precipitation formation in warm clouds. J. Geophys. Res., 109 .D22201, doi:10.1029/2004JD004779.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26 , 31053108.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287 , 17931796.

  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43 , 182195.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44 , 445466.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1981: The use of ice-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109 , 10941102.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4 , 4361.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61 , 15961609.

  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20 , 11061119.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42 , 14871509.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1988: Retrieval of thermal and microphysical variables in observed convective storms. Part II: Sensitivity of cloud processes to variation of the microphysical parameterization. J. Atmos. Sci., 45 , 10721090.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 54 12
PDF Downloads 150 40 12