• Baumgardner, D., and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14 , 12241229.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119 , 30343065.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze Jr., 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51 , 27332755.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze Jr., 1996: The heat budget of a midlatitude squall line and implications for potential vorticity production. J. Atmos. Sci., 53 , 12171240.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Caniaux, G., J-P. Lafore, and J-L. Redelsperger, 1995: A numerical study of the stratiform region of a fast-moving squall line. Part II: Relationship between mass, pressure, and momentum fields. J. Atmos. Sci., 52 , 331352.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. A. Houze Jr., 1984a: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41 , 933960.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. A. Houze Jr., 1984b: Mesoscale updraft magnitude and cloud-ice content deduced from the ice budget of the stratiform region of a tropical cloud cluster. J. Atmos. Sci., 41 , 17171725.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85 , 10751093.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130 , 825841.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., 1999: Aircraft observations of ice crystal evolution in an altostratus cloud. J. Atmos. Sci., 56 , 19251941.

  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60 , 544560.

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: A test of ice self-collection kernels using aircraft data. J. Atmos. Sci., 63 , 651666.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46 , 31443176.

    • Search Google Scholar
    • Export Citation
  • Gallus Jr., W. A., 1996: The influence of microphysics in the formation of intense wake lows: A numerical modeling study. Mon. Wea. Rev., 124 , 22672281.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1990: Microphysical observations in summer MONEX convective and stratiform clouds. Mon. Wea. Rev., 118 , 12381249.

  • Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110 , 118135.

    • Search Google Scholar
    • Export Citation
  • Gardiner, B. A., and J. Hallett, 1985: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol., 2 , 171180.

    • Search Google Scholar
    • Export Citation
  • Gordon, G. L., and J. D. Marwitz, 1986: Hydrometeor evolution in rainbands over the California Valley. J. Atmos. Sci., 43 , 10871100.

  • Grim, J. A., R. M. Rauber, G. M. McFarquhar, D. P. Jorgensen, M. S. Timlin, B. F. Jewett, and A. M. Smith, 2005: Quad-Doppler and microphysical observations of the BAMEX 29 June 2003 MCS. Preprints, 32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, J5J.4.

  • Gu, Y., and K. N. Liou, 2000: Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J. Atmos. Sci., 57 , 24632479.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and R. H. Johnson, 2000: The linear dynamics of squall line mesohighs and wake lows. J. Atmos. Sci., 57 , 93107.

  • Hallett, J., 2003: Measurement in the atmosphere. Handbook of Weather, Climate and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements, T. D. Potter and B. R. Colman, Eds., Wiley-Interscience, 711–720.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. L. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17 , 15661572.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60 , 936956.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., J. E. Dye, and C. J. Biter, 1979: Overestimates of entrainment from wetting of aircraft temperature sensors in cloud. J. Appl. Meteor., 18 , 9295.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002a: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002b: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61 , 9821003.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., and D. D. Churchill, 1984: Microphysical structure of winter monsoon cloud clusters. J. Atmos. Sci., 41 , 34053411.

  • Houze Jr., R. A., and D. D. Churchill, 1987: Mesoscale organization and cloud microphysics in a Bay of Bengal depression. J. Atmos. Sci., 44 , 18451867.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53 , 18381855.

  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. Meteor. Atmos. Phys., 59 , 83104.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1981: Techniques for probing cloud microstructure. Clouds, Their Formation, Optical Properties, and Effects, P.V. Hobbs and A. Deepak, Eds., Academic Press, 15–92.

    • Search Google Scholar
    • Export Citation
  • Lemone, M. A., 1980: On the difficulty of measuring temperature and humidity in cloud: Comments on “Shallow convection on day 261 of GATE: Mesoscale arcs.”. Mon. Wea. Rev., 108 , 17021705.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli Jr., 1982: Growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39 , 697706.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • McFarquhar, G. M., 2004: A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61 , 777794.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53 , 24012423.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61 , 422439.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17 , 37993813.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59 , 24582478.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57 , 295311.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., 1987: A comparison of the results of a two-dimensional numerical simulation of a tropical squall line with observations. Mon. Wea. Rev., 115 , 30553077.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2d ed. Cambridge University Press, 963 pp.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 954 pp.

  • Rasmussen, R., and H. R. Pruppacher, 1982: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius <500 μm. J. Atmos. Sci., 39 , 152158.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1987: Characteristics of cloud ice and precipitation during wintertime storms over the mountains of northern Colorado. J. Climate Appl. Meteor., 26 , 488524.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44 , 26402656.

    • Search Google Scholar
    • Export Citation
  • Smith, A. M., 2006: Explaining the variability of cloud microphysics in stratiform regions of BAMEX MCSs using high-resolution radar and optical array probe measurements. M.S. thesis, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 69 pp. [Available from the Dept. of Atmospheric Sciences, 105 South Gregory St., Urbana, IL 61801-3070.].

  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44 , 445466.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., and H-R. Cho, 1994: A numerical investigation of squall lines. Part II: The mechanics of evolution. J. Atmos. Sci., 51 , 425433.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson, 1989: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46 , 177202.

  • Wakimoto, R. M., H. Cai, and H. V. Murphey, 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85 , 10951106.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 2001: Bow echoes: A tribute to T. T. Fujita. Bull. Amer. Meteor. Soc., 82 , 97116.

  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46 , 20082025.

    • Search Google Scholar
    • Export Citation
  • Yang, M-H., and R. A. Houze Jr., 1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123 , 31753193.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, T., 1985: Observation of microphysical processes in the stratiform precipitations including melting layers at Mt. Fuji. J. Meteor. Soc. Japan, 63 , 100111.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitín, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38 , 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 7 7 7

Vertical Variability of Cloud Hydrometeors in the Stratiform Region of Mesoscale Convective Systems and Bow Echoes

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 2 NOAA, Norman, Oklahoma
Restricted access

Abstract

During the Bow Echo and Mesoscale Convective Vortex Experiment, the NOAA P-3 research aircraft executed 17 spiral descents to the rear of convective lines to document the vertical variability of hydrometeors above, within, and below the stratiform melting layer. Ten spirals were behind lines that exhibited bowing at some stage in their evolution. Although quick descents on some spirals forced sampling of different particle zones, clear trends with respect to temperature were seen. For 16 spirals, the ambient relative humidity with respect to ice was in the range of 100% ± 4% at temperatures between −10°C and the melting layer, but exhibited steady decreases below the melting layer to an average relative humidity with respect to water of 77% ± 15% at 9°C. In contrast, one spiral conducted on 29 June 2003 directly behind a developing bow echo had a relative humidity with respect to ice averaging 85% at heights above the 0°C level and relative humidity with respect to ice further decreased below the 0°C level to a minimum relative humidity with respect to water of 48% at 9°C. Vertical profiles of particle shapes, size distributions (SDs), total mass contents (TMC), number concentrations, and parameters of gamma distributions fit to SDs were computed using optical array probe data in conjunction with measurements of radar reflectivity from the P-3 X-band tail radar. For spirals with humidity at or near saturation above the melting layer, melting particles occurred through about 300 m of cloud depth between 0° and 2° or 3°C. Above the melting layer, number concentrations, dominated by smaller crystals, decreased at 19% ± 10% °C−1, faster than the 10% ± 7% °C−1 decrease of TMC dominated by larger particles. Increases in the numbers of crystals with a maximum dimension <2 mm (N<2) and in the slope parameter with temperature also occurred. To the extent that in-cloud heterogeneity did not complicate observed trends, these trends suggest aggregation dominated the evolution of SDs. Observations on 29 June differ from other days and are explained by the unique position and timing of the spiral in subsaturated air behind a developing bow. On 29 June the presence of an isothermal layer at 2.5°C suggested that sublimative cooling delayed the onset of melting. Ice at 7°C showed that melting particles were present through 500 m of cloud depth. A slight decrease in N<2, but no decrease in the slope parameter, with temperature suggested that sublimation modified the impact of aggregation. Sublimative cooling would only have been significant at the location of the 29 June spiral. For other spirals, evaporative cooling below the melting layer in subsaturated regions was the most important diabatic processes in the stratiform regions at the time of the observations.

Corresponding author address: Dr. Greg M. McFarquhar, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. Email: mcfarq@atmos.uiuc.edu

Abstract

During the Bow Echo and Mesoscale Convective Vortex Experiment, the NOAA P-3 research aircraft executed 17 spiral descents to the rear of convective lines to document the vertical variability of hydrometeors above, within, and below the stratiform melting layer. Ten spirals were behind lines that exhibited bowing at some stage in their evolution. Although quick descents on some spirals forced sampling of different particle zones, clear trends with respect to temperature were seen. For 16 spirals, the ambient relative humidity with respect to ice was in the range of 100% ± 4% at temperatures between −10°C and the melting layer, but exhibited steady decreases below the melting layer to an average relative humidity with respect to water of 77% ± 15% at 9°C. In contrast, one spiral conducted on 29 June 2003 directly behind a developing bow echo had a relative humidity with respect to ice averaging 85% at heights above the 0°C level and relative humidity with respect to ice further decreased below the 0°C level to a minimum relative humidity with respect to water of 48% at 9°C. Vertical profiles of particle shapes, size distributions (SDs), total mass contents (TMC), number concentrations, and parameters of gamma distributions fit to SDs were computed using optical array probe data in conjunction with measurements of radar reflectivity from the P-3 X-band tail radar. For spirals with humidity at or near saturation above the melting layer, melting particles occurred through about 300 m of cloud depth between 0° and 2° or 3°C. Above the melting layer, number concentrations, dominated by smaller crystals, decreased at 19% ± 10% °C−1, faster than the 10% ± 7% °C−1 decrease of TMC dominated by larger particles. Increases in the numbers of crystals with a maximum dimension <2 mm (N<2) and in the slope parameter with temperature also occurred. To the extent that in-cloud heterogeneity did not complicate observed trends, these trends suggest aggregation dominated the evolution of SDs. Observations on 29 June differ from other days and are explained by the unique position and timing of the spiral in subsaturated air behind a developing bow. On 29 June the presence of an isothermal layer at 2.5°C suggested that sublimative cooling delayed the onset of melting. Ice at 7°C showed that melting particles were present through 500 m of cloud depth. A slight decrease in N<2, but no decrease in the slope parameter, with temperature suggested that sublimation modified the impact of aggregation. Sublimative cooling would only have been significant at the location of the 29 June spiral. For other spirals, evaporative cooling below the melting layer in subsaturated regions was the most important diabatic processes in the stratiform regions at the time of the observations.

Corresponding author address: Dr. Greg M. McFarquhar, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. Email: mcfarq@atmos.uiuc.edu

Save