• Barker, D. M., W. Huang, Y-R. Guo, A. Bourgeois, and Q. Xiao, 2004: A three-dimensional variational (3DVAR) data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132 , 19822005.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , C5. 1014310162.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., 1999: Background error statistics derived from an ensemble of analyses. ECMWF Research Department Tech. Memo. 79, 12 pp.

  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85 , 955965.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127 , 21282142.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21 , 457469.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadski, 2002: Scale-dependence of the predictability of pecipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130 , 28592873.

    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34 , 315.

    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and H-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134 , 675698.

    • Search Google Scholar
    • Export Citation
  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75 , 181189.

    • Search Google Scholar
    • Export Citation
  • Lee, M-S., D. M. Barker, and Y-H. Kuo, 2006: Background error statistics using WRF ensembles generated by randomized control variables. J. Kor. Meteor. Soc., 42 , 153167.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126 , 29913012.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 , D14. 1666316682.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131 , 15241535.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1922: Weather Prediction by Numerical Process. Cambridge University Press, 236 pp.

  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52 , 12651287.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133 , 793813.

  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 16421661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835852.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 17891807.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, and R. G. Fovell, 2004: Mantle echoes associated with deep convection: Observations and numerical simulations. Mon. Wea. Rev., 132 , 17011720.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002a: Retrieval of model initial fields from single–Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130 , 433453.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002b: Retrieval of model initial fields from single–Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130 , 454476.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y-H. Kuo, J. Sun, W-C. Lee, E. Lim, Y-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44 , 768788.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y-H. Kuo, J. Sun, W-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of Doppler reflectivity assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46 , 1422.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42 , 14871509.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105 , 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 26
PDF Downloads 20 20 20

Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002

View More View Less
  • 1 Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

The impact of multiple–Doppler radar data assimilation on quantitative precipitation forecasting (QPF) is examined in this study. The newly developed Weather Research and Forecasting (WRF) model Advanced Research WRF (ARW) and its three-dimensional variational data assimilation system (WRF 3DVAR) are used. In this study, multiple–Doppler radar data assimilation is applied in WRF 3DVAR cycling mode to initialize a squall-line convective system on 13 June 2002 during the International H2O Project (IHOP_2002) and the ARW QPF skills are evaluated for the case. Numerical experiments demonstrate that WRF 3DVAR can successfully assimilate Doppler radial velocity and reflectivity from multiple radar sites and extract useful information from the radar data to initiate the squall-line convective system. Assimilation of both radial velocity and reflectivity results in sound analyses that show adjustments in both the dynamical and thermodynamical fields that are consistent with the WRF 3DVAR balance constraint and background error correlation. The cycling of the Doppler radar data from the 12 radar sites at 2100 UTC 12 June and 0000 UTC 13 June produces a more detailed mesoscale structure of the squall-line convection in the model initial conditions at 0000 UTC 13 June. Evaluations of the ARW QPF skills with initialization via Doppler radar data assimilation demonstrate that the more radar data in the temporal and spatial dimensions are assimilated, the more positive is the impact on the QPF skill. Assimilation of both radial velocity and reflectivity has more positive impact on the QPF skill than does assimilation of either radial velocity or reflectivity only. The improvement of the QPF skill with multiple-radar data assimilation is more clearly observed in heavy rainfall than in light rainfall. In addition to the improvement of the QPF skill, the simulated structure of the squall line is also enhanced by the multiple–Doppler radar data assimilation in the WRF 3DVAR cycling experiment. The vertical airflow pattern shows typical characteristics of squall-line convection. The cold pool and its related squall-line convection triggering process are better initiated in the WRF 3DVAR analysis and simulated in the ARW forecast when multiple–Doppler radar data are assimilated.

Corresponding author address: Dr. Qingnong Xiao, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: hsiao@ucar.edu

Abstract

The impact of multiple–Doppler radar data assimilation on quantitative precipitation forecasting (QPF) is examined in this study. The newly developed Weather Research and Forecasting (WRF) model Advanced Research WRF (ARW) and its three-dimensional variational data assimilation system (WRF 3DVAR) are used. In this study, multiple–Doppler radar data assimilation is applied in WRF 3DVAR cycling mode to initialize a squall-line convective system on 13 June 2002 during the International H2O Project (IHOP_2002) and the ARW QPF skills are evaluated for the case. Numerical experiments demonstrate that WRF 3DVAR can successfully assimilate Doppler radial velocity and reflectivity from multiple radar sites and extract useful information from the radar data to initiate the squall-line convective system. Assimilation of both radial velocity and reflectivity results in sound analyses that show adjustments in both the dynamical and thermodynamical fields that are consistent with the WRF 3DVAR balance constraint and background error correlation. The cycling of the Doppler radar data from the 12 radar sites at 2100 UTC 12 June and 0000 UTC 13 June produces a more detailed mesoscale structure of the squall-line convection in the model initial conditions at 0000 UTC 13 June. Evaluations of the ARW QPF skills with initialization via Doppler radar data assimilation demonstrate that the more radar data in the temporal and spatial dimensions are assimilated, the more positive is the impact on the QPF skill. Assimilation of both radial velocity and reflectivity has more positive impact on the QPF skill than does assimilation of either radial velocity or reflectivity only. The improvement of the QPF skill with multiple-radar data assimilation is more clearly observed in heavy rainfall than in light rainfall. In addition to the improvement of the QPF skill, the simulated structure of the squall line is also enhanced by the multiple–Doppler radar data assimilation in the WRF 3DVAR cycling experiment. The vertical airflow pattern shows typical characteristics of squall-line convection. The cold pool and its related squall-line convection triggering process are better initiated in the WRF 3DVAR analysis and simulated in the ARW forecast when multiple–Doppler radar data are assimilated.

Corresponding author address: Dr. Qingnong Xiao, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: hsiao@ucar.edu

Save