• Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121 , 15251548.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and D. R. MacGorman, 1998: Evolution of cloud-to-ground lightning characteristics and storm structure in the Spearman, Texas, tornadic supercells of 31 May 1990. Mon. Wea. Rev., 126 , 14511467.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. Heckman, and S. J. Goodman, 2001: A diagnostic analysis of the Kennedy Space Center LDAR network: 1. Data characteristics. J. Geophys. Res., 106 , 47694786.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., D. Rust, D. R. MacGorman, P. R. Krehbiel, R. Thomas, W. Rison, T. Hamlin, and J. Harlin, 2002: Thunderstorm charge regions inferred from the vector electric field in combination with data from a lightning mapping array in STEPS. Eos, Trans. Amer. Geophys. Union, 83 , (Fall Meeting Suppl.), Abstract. A71B-0095.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 , 1397914000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2003: Characteristics of cloud-to-ground lightning in severe and nonsevere storms over the central United States from 1989–1998. J. Geophys. Res., 108 .4483, doi:10.1029/2002JD002951.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110 .D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Coleman, L., T. Marshall, M. Stolzenburg, P. Krehbiel, R. Thomas, and D. Shown, 2000: Comparison of thunderstorm charge location indicated by the Lightning Mapping Array (LMA) and by balloon electric field soundings. Eos, Trans. Amer. Geophys. Union, 81 , (Fall Meeting Suppl.), Abstract. A52C-27.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, and J. V. Tuel, 2000: Lightning detection methods and meteorological applications. Preprints, Fourth Int. Symp. on Military Meteorology, Malbork, Poland, WMO, 85–100.

  • Cummins, K. L., J. A. Cramer, C. J. Biagi, E. P. Krider, J. Jerauld, M. A. Uman, and V. A. Rakov, 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, 6.1.

  • Demetriades, N., M. J. Murphy, and K. L. Cummins, 2001: Cloud and cloud-to-ground lightning detection at LF and VHF: Early results from Global Atmospherics Dallas–Fort Worth LDAR II and IMPACT/ESP research networks. Eos, Trans. Amer. Geophys. Union, 82 , (Fall Meeting Suppl.), Abstract. AE21A-07.

    • Search Google Scholar
    • Export Citation
  • Detwiler, A. G., J. H. Helsdon, D. V. Kliche, Q. Mo, and T. A. Warner, 2002: Lightning characteristics of two storms observed during STEPS. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 311–314.

  • Dotzek, N., H. Höller, C. Théry, and T. Fehr, 2001: Lightning evolution related to radar-derived microphysics in the 21 July 1998 EULINOX supercell storm. Atmos. Res., 56 , 335354.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 1986: Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res., 91 , 12311247.

    • Search Google Scholar
    • Export Citation
  • Harlin, J. D., T. D. Hamlin, P. R. Krehbiel, R. J. Thomas, W. Rison, and D. Shown, 2000: LMA observations of tornadic storms during STEPS 2000. Eos, Trans. Amer. Geophys. Union, 81 , (Fall Meeting Suppl.), Abstract. A52C-25.

    • Search Google Scholar
    • Export Citation
  • Hondl, K. D., 2003: Capabilities and components of the Warning Decision Support System-Integrated Information (WDSS-II). Preprints, 19th Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, 14.7.

  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13 , 263276.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81 , 21–2225.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130 , 24922506.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85 , 11071125.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and K. E. Nielsen, 1991: Cloud-to-ground lightning in a tornadic storm on 8 May 1986. Mon. Wea. Rev., 119 , 15571574.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46 , 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D., and Coauthors, 2002: Lightning relative to precipitation and tornadoes in a supercell storm during MEAPRS. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 423–426.

  • Mansell, E. R., D. R. MacGorman, C. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107 .4075, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., W. D. Rust, and J. C. Gerlach, 1986: Evolution of lightning flash density and reflectivity structure in a multicell thunderstorm. J. Geophys. Res., 91 , 86908700.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., J. Bailey, S. J. Goodman, R. Blakeslee, J. Hall, D. E. Buechler, and T. Bradshaw, 2002: Preliminary results from the North Alabama lightning mapping array. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 427-430.

  • McCormick, T. L., 2003: Three-dimensional radar and total lightning characteristics of mesoscale convective systems. M.S. thesis, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 354 pp.

  • Murphy, M. J., and N. W. S. Demetriades, 2005: An analysis of lightning holes in a DFW supercell storm using total lightning and radar information. Extended Abstracts, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 2.3.

  • NCDC, 2001: Storm Data. Vol. 43, No. 10, 174 pp. [Available from National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801.].

  • Orville, R. E., and G. R. Huffines, 1999: Lightning ground flash measurements over the contiguous United States: 1995–97. Mon. Wea. Rev., 127 , 26932703.

    • Search Google Scholar
    • Export Citation
  • Oye, D., and M. Case, 1995: REORDER: A program for gridding radar data, installation and use manual for the UNIX version. NCAR/Atmospheric Technology Division, Boulder, CO, 19 pp.

  • Perez, A. H., L. J. Wicker, and R. E. Orville, 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12 , 428437.

    • Search Google Scholar
    • Export Citation
  • Proctor, D. E., 1991: Regions where lightning flashes began. J. Geophys. Res., 96 , 50995112.

  • Rakov, V. A., and M. A. Uman, 2003: Lightning: Physics and Effects. Cambridge University Press, 687 pp.

  • Ray, P. S., D. R. MacGorman, W. D. Rust, W. L. Taylor, and L. W. Rasmussen, 1987: Lightning location relative to storm structure in a supercell storm and a multicell storm. J. Geophys. Res., 92 , 57135724.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26 , 35733576.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., W. L. Taylor, and D. MacGorman, 1982: Preliminary study of lightning location relative to storm structure. Amer. Inst. Aeronaut. Astronaut. J., 20 , 404409.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32 , 642655.

  • Saunders, C. P. R., and I. M. Brooks, 1992: The effects of high liquid water content on thunderstorm charging. J. Geophys. Res., 97 , 1467114676.

    • Search Google Scholar
    • Export Citation
  • Sharp, D. W., 2005: Operational applications of lightning data at WFO Melbourne, FL: A 15-year retrospective. Preprints, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 1.1.

  • Stolzenburg, M., W. D. Rust, B. F. Smull, and T. C. Marshall, 1998a: Electrical structure in thunderstorm convective regions, 1. Mesoscale convective systems. J. Geophys. Res., 103 , 1405914078.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998b: Electrical structure in thunderstorm convective regions, 2. Isolated storms. J. Geophys. Res., 103 , 1407914096.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998c: Electrical structure in thunderstorm convective regions, 3. Synthesis. J. Geophys. Res., 103 , 1409714108.

    • Search Google Scholar
    • Export Citation
  • Storm Prediction Center, cited. 2005: Storm reports. [Available online at http://spc.noaa.gov/climo/.].

  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory Mesocyclone Detection Algorithm for the WSR-88D. Wea. Forecasting, 13 , 304326.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Thomas, R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109 .D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94 , 1315113167.

  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527–561.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51 , 245265.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13 , 286303.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2003: Electrification and lightning in a simulated supercell thunderstorm. Proc. 12th Int. Conf. on Atmospheric Electricity, Versailles, France, International Commission on Atmospheric Electricity.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 27
PDF Downloads 4 4 4

Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part I: Supercells

View More View Less
  • 1 Department of Earth Sciences, State University of New York at Oswego, Oswego, New York
  • | 2 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
Restricted access

Abstract

It is shown that total lightning mapping, along with radar and National Lightning Detection Network (NLDN) cloud-to-ground lightning data, can be used to diagnose the severity of a thunderstorm. Analysis of supercells, some of which were tornadic, on 13 October 2001 over Dallas–Fort Worth, Texas, shows that Lightning Detection and Ranging (LDAR II) lightning source heights (quartile, median, and 95th percentile heights) increased as the storms intensified. Most of the total (cloud to ground and intracloud) lightning occurred where reflectivity cores extended upward, within regions of strong reflectivity gradient rather than in reflectivity cores. A total lightning hole was associated with an intense, nontornadic supercell on 6 April 2003. None of the supercells on 13 October 2001 exhibited a lightning hole. During tornadogenesis, the radar and LDAR II data indicated updraft weakening. The height of the 30-dBZ radar top began to descend approximately 10 min (2 volume scans) before tornado touchdown in one storm. Total lightning and cloud-to-ground flash rates decreased by up to a factor of 5 to a minimum during an F2 tornado touchdown associated with this storm. LDAR II source heights all showed descent by 2–4 km during a 25-min period prior to and during this tornado touchdown. This drastic trend of decreasing source heights prior to and during tornado touchdown was observed in two storms, but did not occur in nontornadic supercells, suggesting that these parameters can be useful to forecasters. These observations agree with tornadogenesis theory that as the updraft weakens, the mesocyclone can divide (into an updraft and downdraft) and become tornadic.

Corresponding author address: Dr. Scott M. Steiger, Dept. of Earth Sciences, State University of New York at Oswego, Oswego, NY 13126. Email: steiger@oswego.edu

Abstract

It is shown that total lightning mapping, along with radar and National Lightning Detection Network (NLDN) cloud-to-ground lightning data, can be used to diagnose the severity of a thunderstorm. Analysis of supercells, some of which were tornadic, on 13 October 2001 over Dallas–Fort Worth, Texas, shows that Lightning Detection and Ranging (LDAR II) lightning source heights (quartile, median, and 95th percentile heights) increased as the storms intensified. Most of the total (cloud to ground and intracloud) lightning occurred where reflectivity cores extended upward, within regions of strong reflectivity gradient rather than in reflectivity cores. A total lightning hole was associated with an intense, nontornadic supercell on 6 April 2003. None of the supercells on 13 October 2001 exhibited a lightning hole. During tornadogenesis, the radar and LDAR II data indicated updraft weakening. The height of the 30-dBZ radar top began to descend approximately 10 min (2 volume scans) before tornado touchdown in one storm. Total lightning and cloud-to-ground flash rates decreased by up to a factor of 5 to a minimum during an F2 tornado touchdown associated with this storm. LDAR II source heights all showed descent by 2–4 km during a 25-min period prior to and during this tornado touchdown. This drastic trend of decreasing source heights prior to and during tornado touchdown was observed in two storms, but did not occur in nontornadic supercells, suggesting that these parameters can be useful to forecasters. These observations agree with tornadogenesis theory that as the updraft weakens, the mesocyclone can divide (into an updraft and downdraft) and become tornadic.

Corresponding author address: Dr. Scott M. Steiger, Dept. of Earth Sciences, State University of New York at Oswego, Oswego, NY 13126. Email: steiger@oswego.edu

Save