• Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56 , 17481765.

  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2006: Conditioned verification region selection in adaptive sampling. Quart. J. Roy. Meteor. Soc., 132 , 915934.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126 , 17191724.

  • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75 , 257288.

  • Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

    • Search Google Scholar
    • Export Citation
  • Etherton, B. J., and C. H. Bishop, 2004: Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error. Mon. Wea. Rev., 132 , 10651080.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53 , 343367.

  • Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128 , 18521867.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

  • Hamill, T. M., and C. Snyder, 2002: Using improved background-error covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130 , 15521572.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. A., and A. L. Smith, 2000: The role of operational constraints in selecting supplementary observations. J. Atmos. Sci., 57 , 28592871.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133 , 604620.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A , 273277.

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. Amer. Soc. Mech. Eng., J. Basic Eng., 82 , 3545.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., and R. S. Bucy, 1961: New results in linear filtering and prediction theory. Trans. Amer. Soc. Mech. Eng., J. Basic Eng., 83 , 95107.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285 , 15481550.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary observations: Simulation with a small model. J. Atmos. Sci., 55 , 399414.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., C. H. Bishop, B. J. Etherton, and Z. Toth, 2002: Adaptive sampling with the ensemble transform Kalman filter. Part II: Field program implementation. Mon. Wea. Rev., 130 , 13561369.

    • Search Google Scholar
    • Export Citation
  • Masutani, M., and Coauthors, 2006: Observing system simulation experiments at NCEP. NCEP Office Note 451, 34 pp. [Available online at http://www.emc.ncep.noaa.gov/research/osse/NR/references/Masutani.2006.on451.pdf.].

  • Morss, R. E., K. A. Emauel, and C. Snyder, 2001: Idealized adaptive observation strategies for improving numerical weather prediction. J. Atmos. Sci., 58 , 210232.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and L. A. Smith, 2003: Combining dynamical and statistical ensembles. Tellus, 55A , 1630.

  • Stensrud, D. J., J-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square-root filters. Mon. Wea. Rev., 131 , 14851490.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

  • Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132 , 15901605.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Preemptive Forecasts Using an Ensemble Kalman Filter

View More View Less
  • 1 Department of Geography and Earth Science, University of North Carolina at Charlotte, Charlotte, North Carolina
Restricted access

Abstract

An ensemble Kalman filter (EnKF) estimates the error statistics of a model forecast using an ensemble of model forecasts. One use of an EnKF is data assimilation, resulting in the creation of an increment to the first-guess field at the observation time. Another use of an EnKF is to propagate error statistics of a model forecast forward in time, such as is done for optimizing the location of adaptive observations. Combining these two uses of an ensemble Kalman filter, a “preemptive forecast” can be generated. In a preemptive forecast, the increment to the first-guess field is, using ensembles, propagated to some future time and added to the future control forecast, resulting in a new forecast. This new forecast requires no more time to produce than the time needed to run a data assimilation scheme, as no model integration is necessary. In an observing system simulation experiment (OSSE), a barotropic vorticity model was run to produce a 300-day “nature run.” The same model, run with a different vorticity forcing scheme, served as the forecast model. The model produced 24- and 48-h forecasts for each of the 300 days. The model was initialized every 24 h by assimilating observations of the nature run using a hybrid ensemble Kalman filter–three-dimensional variational data assimilation (3DVAR) scheme. In addition to the control forecast, a 64-member forecast ensemble was generated for each of the 300 days. Every 24 h, given a set of observations, the 64-member ensemble, and the control run, an EnKF was used to create 24-h preemptive forecasts. The preemptive forecasts were more accurate than the unmodified, original 48-h forecasts, though not quite as accurate as the 24-h forecast obtained from a new model integration initialized by assimilating the same observations as were used in the preemptive forecasts. The accuracy of the preemptive forecasts improved significantly when 1) the ensemble-based error statistics used by the EnKF were localized using a Schur product and 2) a model error term was included in the background error covariance matrices.

Corresponding author address: Brian J. Etherton, Dept. of Geography and Earth Science, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. Email: betherto@uncc.edu

Abstract

An ensemble Kalman filter (EnKF) estimates the error statistics of a model forecast using an ensemble of model forecasts. One use of an EnKF is data assimilation, resulting in the creation of an increment to the first-guess field at the observation time. Another use of an EnKF is to propagate error statistics of a model forecast forward in time, such as is done for optimizing the location of adaptive observations. Combining these two uses of an ensemble Kalman filter, a “preemptive forecast” can be generated. In a preemptive forecast, the increment to the first-guess field is, using ensembles, propagated to some future time and added to the future control forecast, resulting in a new forecast. This new forecast requires no more time to produce than the time needed to run a data assimilation scheme, as no model integration is necessary. In an observing system simulation experiment (OSSE), a barotropic vorticity model was run to produce a 300-day “nature run.” The same model, run with a different vorticity forcing scheme, served as the forecast model. The model produced 24- and 48-h forecasts for each of the 300 days. The model was initialized every 24 h by assimilating observations of the nature run using a hybrid ensemble Kalman filter–three-dimensional variational data assimilation (3DVAR) scheme. In addition to the control forecast, a 64-member forecast ensemble was generated for each of the 300 days. Every 24 h, given a set of observations, the 64-member ensemble, and the control run, an EnKF was used to create 24-h preemptive forecasts. The preemptive forecasts were more accurate than the unmodified, original 48-h forecasts, though not quite as accurate as the 24-h forecast obtained from a new model integration initialized by assimilating the same observations as were used in the preemptive forecasts. The accuracy of the preemptive forecasts improved significantly when 1) the ensemble-based error statistics used by the EnKF were localized using a Schur product and 2) a model error term was included in the background error covariance matrices.

Corresponding author address: Brian J. Etherton, Dept. of Geography and Earth Science, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. Email: betherto@uncc.edu

Save