Radar and Lightning Observations of the 3 June 2000 Electrically Inverted Storm from STEPS

Sarah A. Tessendorf Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
,
Kyle C. Wiens Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Kyle C. Wiens in
Current site
Google Scholar
PubMed
Close
, and
Steven A. Rutledge Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study addresses the kinematic, microphysical, and electrical evolution of an isolated convective storm observed on 3 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study field campaign. Doppler-derived vertical velocities, radar reflectivity, hydrometeor classifications from polarimetric radar, and Lightning Mapping Array (LMA) charge structures are examined over a nearly 3-h period. This storm, characterized as a low-precipitation supercell, produced modest amounts of hail, determined by fuzzy-logic hydrometeor classification as mostly small (<2 cm) hail, with one surface report of large (≥2 cm) hail. Doppler-derived updraft speeds peaked between 20 and 25 m s−1, and reflectivity was never greater than 60 dBZ. The most striking feature of this storm was its total lack of cloud-to-ground (CG) lightning. Though this storm was electrically active, with maximum flash rates near 30 per minute, no CG flashes of either polarity were detected. The charge structure inferred from the LMA observations was consistent with an inverted dipole, defined as having a midlevel positive charge region below upper-level negative charge. Inverted charge structures have typically been considered conducive to producing positive CG lightning; however, the 3 June storm appeared to lack the lower negative charge layer below the inverted dipole that is thought to provide the downward electrical bias necessary for positive CG lightning.

Corresponding author address: Sarah A. Tessendorf, NOAA/Earth System Research Laboratory, DSRC R/CSD3, 325 Broadway, Boulder, CO 80305. Email: sarah.tessendorf@noaa.gov

Abstract

This study addresses the kinematic, microphysical, and electrical evolution of an isolated convective storm observed on 3 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study field campaign. Doppler-derived vertical velocities, radar reflectivity, hydrometeor classifications from polarimetric radar, and Lightning Mapping Array (LMA) charge structures are examined over a nearly 3-h period. This storm, characterized as a low-precipitation supercell, produced modest amounts of hail, determined by fuzzy-logic hydrometeor classification as mostly small (<2 cm) hail, with one surface report of large (≥2 cm) hail. Doppler-derived updraft speeds peaked between 20 and 25 m s−1, and reflectivity was never greater than 60 dBZ. The most striking feature of this storm was its total lack of cloud-to-ground (CG) lightning. Though this storm was electrically active, with maximum flash rates near 30 per minute, no CG flashes of either polarity were detected. The charge structure inferred from the LMA observations was consistent with an inverted dipole, defined as having a midlevel positive charge region below upper-level negative charge. Inverted charge structures have typically been considered conducive to producing positive CG lightning; however, the 3 June storm appeared to lack the lower negative charge layer below the inverted dipole that is thought to provide the downward electrical bias necessary for positive CG lightning.

Corresponding author address: Sarah A. Tessendorf, NOAA/Earth System Research Laboratory, DSRC R/CSD3, 325 Broadway, Boulder, CO 80305. Email: sarah.tessendorf@noaa.gov

Save
  • Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low-precipitation severe thunderstorms in the Southern Plains. Mon. Wea. Rev., 111 , 20342046.

    • Search Google Scholar
    • Export Citation
  • Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti, 1982: The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res., 87 , 12071215.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp. [NTIS PB-234-515.].

  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 , 1397914000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2003: Characteristics of cloud-to-ground lightning in severe and nonsevere storms over the central United States from 1989–1998. J. Geophys. Res., 108 .4483, doi:10.1029/2002JD002951.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. da Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM-LBA. J. Geophys. Res., 107 .8077, doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , D8. 90359044.

    • Search Google Scholar
    • Export Citation
  • Holm, M. L., 2005: A case study of the 3 June 2000 STEPS storm: The electrification of a low precipitation supercell. M.S. thesis, Department of Atmospheric Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota, 87 pp.

  • Jacobson, E. A., and E. P. Krider, 1976: Electrostatic field changes produced by Florida lightning. J. Atmos. Sci., 33 , 103117.

  • Kasemir, H. W., 1960: A contribution to the electrostatic theory of lightning discharge. J. Geophys. Res., 65 , 18731878.

  • Krehbiel, P. R., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, National Academy Press, 90–113.

  • Krehbiel, P. R., R. Thomas, W. Rison, T. Hamlin, J. Harlin, M. Stanley, J. Lombardo, and D. Shown, 2000: Inverted polarity lightning in STEPS. Eos, Trans. Amer. Geophys. Union, 81 , (Suppl.), Abstract. A62D-06.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerical simulations of the 29 June 2000 STEPS supercell: Microphysics, electrification, and lightning. Mon. Wea. Rev., 134 , 27342757.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130 , 24922506.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. A. Rutledge, J. E. Dye, M. Venticinque, P. Laroche, and E. Defer, 2000: Anomalously low negative cloud-to-ground lightning flash rates in intense convective storms observed during STERAO-A. Mon. Wea. Rev., 128 , 160173.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85 , 11071125.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and A. M. Blyth, 1998: A comparison of optical measurements of liquid water content and drop size distribution in adiabatic regions of Florida cumuli. Atmos. Res., 48 , 671690.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122 , 16711697.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46 , 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. Krehbiel, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133 , 25832607.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107 .4075, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110 .D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and M. Stolzenburg, 2002: Electrical energy constraints on lightning. J. Geophys. Res., 107 .4052, doi:10.1029/2000JD000024.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., and L. H. Ruhnke, 1993: Common physical processes in natural and artificially triggered lightning. J. Geophys. Res., 98 , 1291312930.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., and R. L. Vaughn, 1979: An economical approach for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18 , 661670.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughn, and H. W. Frank, 1986: On the merger of mesoscale data sets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol., 3 , 143161.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9 , 327347.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9 , 197203.

  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129 , 11791193.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in Central New Mexico. Geophys. Res. Lett., 26 , 35733576.

    • Search Google Scholar
    • Export Citation
  • Rust, D. R., and D. R. MacGorman, 2002: Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29 .1571, doi:10.1029/2001GL014303.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structure in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76 , 247271.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during graupel/crystal collisions. J. Geophys. Res., 103 , 1394913956.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Seimon, A., 1993: Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990. Bull. Amer. Meteor. Soc., 74 , 189203.

    • Search Google Scholar
    • Export Citation
  • Simpson, G. C., and F. J. Scrase, 1937: The distribution of electricity in thunderclouds. Proc. Roy. Soc. London, 161A , 309352.

  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions. 3. Synthesis. J. Geophys. Res., 103 , 1409714108.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnic, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62 , 41274150.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., S. A. Rutledge, and K. C. Wiens, 2007: Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS. Mon. Wea. Rev., 36823706.

    • Search Google Scholar
    • Export Citation
  • Thomas, R., P. Krehbiel, W. Rison, J. Harlin, T. Hamlin, and N. Campbell, 2003: The LMA flash algorithm. Proc. 12th Int. Conf. on Atmospheric Electricity, Versailles, France, ICAE, 655–656.

  • Thomas, R., P. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109 .D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., 2005: Kinematic, microphysical, and electrical structure and evolution of thunderstorms during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Ph.D. thesis, Colorado State University, 295 pp.

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94 , 1315113167.

  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50 , Amer. Meteor. Soc. 527561.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., M. E. Weber, and R. E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94 , 1321313220.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51 , 245264.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76 , 288306.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2151 1891 1220
PDF Downloads 246 108 53