Using Temperature–Salinity Relations in a Global Ocean Implementation of a Multivariate Data Assimilation Scheme

A. Bellucci Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy

Search for other papers by A. Bellucci in
Current site
Google Scholar
PubMed
Close
,
S. Masina Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by S. Masina in
Current site
Google Scholar
PubMed
Close
,
P. DiPietro Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by P. DiPietro in
Current site
Google Scholar
PubMed
Close
, and
A. Navarra Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Search for other papers by A. Navarra in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.

Correspondening author address: A. Bellucci, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Viale A. Moro 44, Bologna 40127, Italy. Email: E-mail bellucci@bo.ingv.it

Abstract

In this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.

Correspondening author address: A. Bellucci, Centro Euro-Mediterraneo per i Cambiamenti Climatici, Viale A. Moro 44, Bologna 40127, Italy. Email: E-mail bellucci@bo.ingv.it

Save
  • Alves, O., M. Alonso-Balmaseda, D. L. T. Anderson, and T. Stockdale, 2004: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Quart. J. Roy. Meteor. Soc., 130 , 647668.

    • Search Google Scholar
    • Export Citation
  • Bell, M. J., M. J. Martin, and N. K. Nichols, 2004: Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteor. Soc., 130 , 873893.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., M. A. Balmaseda, F. C. Vossepoel, G. J. van Oldenborgh, and P. J. Van Leeuwen, 2002: Balanced ocean data assimilation near the equator. J. Phys. Oceanogr., 32 , 25092519.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the upper ocean, 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Davey, M., and ENACT Partnership, 2006: Multimodel multi-method multi-decadal ocean analyses from the ENACT project. Exchanges, 38 , 2225.

    • Search Google Scholar
    • Export Citation
  • De Mey, P., and A. Robinson, 1987: Assimilation of altimeter eddy fields in a limited-area quasi-geostrophic model. J. Phys. Oceanogr., 17 , 22802293.

    • Search Google Scholar
    • Export Citation
  • De Mey, P., and M. Benkiran, 2002: A multivariate reduced-order optimal interpolation method and its application to the Mediterranean basin-scale circulation. Ocean Forecasting: Conceptual Basis and Applications, N. Pinardi and J. D. Woods, Eds., Springer Verlag, 281–306.

    • Search Google Scholar
    • Export Citation
  • Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19 , 13331347.

  • Donguy, J. R., 1994: Surface and subsurface salinity in the tropical Pacific Ocean. Prog. Oceanogr., 34 , 4578.

  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2. J. Geophys. Res., 105 , C8. 1947719498.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75 , 181189.

    • Search Google Scholar
    • Export Citation
  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean profiles: Historical and real-time data. J. Mar. Syst., 65 , 158175.

  • Ji, M., and A. Leetma, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev., 125 , 742753.

    • Search Google Scholar
    • Export Citation
  • Klemm, D. D., M. J. Bell, R. M. Forbes, and A. Hines, 2000: Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting. J. Mar. Syst., 25 , 122.

    • Search Google Scholar
    • Export Citation
  • Lazar, A., G. Madec, and P. Delecluse, 1999: The deep interior downwelling, the Veronis effect, and mesoscale tracer transport parameterizations in an OGCM. J. Phys. Oceanogr., 29 , 29452961.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: World Ocean Database 1998. NOAA Atlas NESDIS 1, 346 pp.

  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126 , 29913012.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecleuse, M. Imbard, and C. Levy, 1998: OPA, release 8.1: Ocean general circulation model reference manual. LODYC/IPSL Tech. Note 11, Paris, France, 91 pp.

  • Maes, C., 1998: Estimating the influence of salinity on sea level anomaly in the ocean. Geophys. Res. Lett., 25 , 35513554.

  • Maes, C., D. Behringer, R. W. Reynolds, and M. Ji, 2000: Retrospective analysis of the salinity variability in the western tropical Pacific Ocean using an indirect minimization approach. J. Atmos. Oceanic Technol., 17 , 512524.

    • Search Google Scholar
    • Export Citation
  • Masina, S., N. Pinardi, and A. Navarra, 2001: A global ocean temperature and altimeter data assimilation system for studies of climate variability. Climate Dyn., 17 , 687700.

    • Search Google Scholar
    • Export Citation
  • Masina, S., P. Di Pietro, and A. Navarra, 2004: Interannual-to-decadal variability of the North Atlantic from an ocean data assimilation system. Climate Dyn., 23 , 531546.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103 , 1416914240.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Jarvinen, E. Klinker, J. F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., E. Frankignoul, E. Kestenare, and M. J. McPhaden, 1994: Seasonal variability in the surface currents of the equatorial Pacific. J. Geophys. Res., 99 , 2032320344.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1988: A real-time global surface temperature analysis. J. Climate, 1 , 7586.

  • Ricci, S., A. Weaver, J. Vialard, and P. Rogel, 2005: Incorporating state-dependent temperature–salinity constraints in the background error covariance of variational ocean data assimilation. Mon. Wea. Rev., 133 , 317338.

    • Search Google Scholar
    • Export Citation
  • Rio, M. H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109 .C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125 , 754772.

    • Search Google Scholar
    • Export Citation
  • Segschneider, J., D. L. T. Anderson, J. Vialard, M. Balmaseda, T. N. Stockdale, A. Troccoli, and K. Haines, 2001: Initialization of seasonal forecasts assimilating sea level and temperature observations. J. Climate, 14 , 42924307.

    • Search Google Scholar
    • Export Citation
  • Sparnocchia, S., N. Pinardi, and E. Demirov, 2003: Multivariate empirical orthogonal function analysis of the upper thermocline structure of the Mediterranean Sea from observations and model simulations. Ann. Geophys., 21 , 167187.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. E. Raymer, 1982: Eighteen degree water variability. J. Mar. Res., 40 , 757775.

  • Troccoli, A., and K. Haines, 1999: Use of temperature–salinity relation in a data assimilation context. J. Atmos. Oceanic Technol., 16 , 20112025.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., and P. Källberg, 2004: Precipitation correction in the ERA-40 reanalysis. ERA-40 Project Rep. Series 13, 6 pp.

  • Troccoli, A., and Coauthors, 2002: Salinity adjustments in the presence of temperature data assimilation. Mon. Wea. Rev., 130 , 89102.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Vialard, J., A. T. Weaver, D. L. T. Anderson, and P. Delecleuse, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part II: Physical validation. Mon. Wea. Rev., 131 , 13791395.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131 , 13601378.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 516 308 184
PDF Downloads 156 59 8