The Three-Dimensional Structure and Kinematics of Drizzling Stratocumulus

Kimberly K. Comstock Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Kimberly K. Comstock in
Current site
Google Scholar
PubMed
Close
,
Sandra E. Yuter Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Sandra E. Yuter in
Current site
Google Scholar
PubMed
Close
,
Robert Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Drizzling marine stratocumulus are examined using observations from the 2001 East Pacific Investigation of Climate Stratocumulus (EPIC Sc) field experiment. This study uses a unique combination of satellite and shipborne Doppler radar data including both horizontal and vertical cross sections through drizzle cells. Stratocumulus cloud structure was classified as closed cellular, open cellular, or unclassifiable using infrared satellite images. Distributions of drizzle cell structure, size, and intensity are similar among the cloud-structure categories, though the open-cellular distributions are shifted toward higher values. Stronger and larger drizzle cells preferentially occur when the cloud field is broken (open-cellular and unclassifiable categories). Satellite observations of cloud structure may be useful to indicate the most likely distribution of rain rates associated with a set of scenes, but infrared data alone are not sufficient to develop routine precipitation retrievals for marine stratocumulus. Individual drizzle cells about 2–20 km across usually showed precipitation growth within the cloud layer and evaporation below, divergence near echo top, and convergence below cloud base. Diverging flow near the surface was also observed beneath heavily precipitating drizzle cells. As the cloud field transitioned from a closed to an open-cellular cloud structure, shipborne radar revealed prolific development of small drizzle cells (<10 km2) that exceeded by over 5 times the number of total cells in either the preceding closed-cellular or following open-cellular periods. Peak area-average rain rates lagged by a few hours the peak in total number of drizzle cells. Based on observations from EPIC Sc, the highest stratocumulus rain rates are more likely to occur near the boundary between closed and open-cellular cloud structures.

Corresponding author address: Sandra Yuter, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. Email: sandra_yuter@ncsu.edu

Abstract

Drizzling marine stratocumulus are examined using observations from the 2001 East Pacific Investigation of Climate Stratocumulus (EPIC Sc) field experiment. This study uses a unique combination of satellite and shipborne Doppler radar data including both horizontal and vertical cross sections through drizzle cells. Stratocumulus cloud structure was classified as closed cellular, open cellular, or unclassifiable using infrared satellite images. Distributions of drizzle cell structure, size, and intensity are similar among the cloud-structure categories, though the open-cellular distributions are shifted toward higher values. Stronger and larger drizzle cells preferentially occur when the cloud field is broken (open-cellular and unclassifiable categories). Satellite observations of cloud structure may be useful to indicate the most likely distribution of rain rates associated with a set of scenes, but infrared data alone are not sufficient to develop routine precipitation retrievals for marine stratocumulus. Individual drizzle cells about 2–20 km across usually showed precipitation growth within the cloud layer and evaporation below, divergence near echo top, and convergence below cloud base. Diverging flow near the surface was also observed beneath heavily precipitating drizzle cells. As the cloud field transitioned from a closed to an open-cellular cloud structure, shipborne radar revealed prolific development of small drizzle cells (<10 km2) that exceeded by over 5 times the number of total cells in either the preceding closed-cellular or following open-cellular periods. Peak area-average rain rates lagged by a few hours the peak in total number of drizzle cells. Based on observations from EPIC Sc, the highest stratocumulus rain rates are more likely to occur near the boundary between closed and open-cellular cloud structures.

Corresponding author address: Sandra Yuter, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695. Email: sandra_yuter@ncsu.edu

Save
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432 , 10141017.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34 , 403431.

  • Austin, P., Y. Wang, R. Pincus, and V. Kujala, 1995: Precipitation in stratocumulus clouds: Observations and modeling results. J. Atmos. Sci., 52 , 23292352.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 .L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Bretherton, C. S., T. Uttal, C. W. Fairall, S. E. Yuter, R. A. Weller, D. Baumgardner, K. Comstock, and R. Wood, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., 2006: Mesoscale variability and drizzle in southeast Pacific stratocumulus. Ph.D. thesis, University of Washington, 132 pp.

  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: The relationship between reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130 , 28912918.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62 , 37923807.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., N. A. Bond, C. W. Fairall, and R. A. Weller, 2006: Surface cloud forcing in the East Pacific stratus deck/cold tongue/ITCZ complex. J. Climate, 19 , 392409.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996a: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101 , 2139121402.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., B. Stevens, W. R. Cotton, and A. S. Frisch, 1996b: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53 , 11081122.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelson, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5 , 12811304.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118 , 614654.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., S. Lee, P. B. Krummel, J. Katzfey, and D. Gogoasa, 2000: Precipitation in marine cumulus and stratocumulus. Part I: Thermodynamic and dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54 , 117155.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. M. Wakimoto, 1991: Kinematic, dynamic and thermodynamic analysis of a weakly sheared severe thunderstorm over northern Alabama. Mon. Wea. Rev., 119 , 262297.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., C. W. Fairall, P. Zuidema, J. Tomlinson, and G. A. Wick, 2004: Observations of marine stratocumulus in SE Pacific during the PACS 2003 cruise. Geophys. Res. Lett., 31 .L22110, doi:10.1029/2004GL020751.

    • Search Google Scholar
    • Export Citation
  • Krueger, A. F., and S. Fritz, 1961: Cellular cloud patterns revealed by TIROS I. Tellus, 13 , 17.

  • Leon, D. C., 2006: Observations of drizzle-cells in marine stratucumulus. Ph.D. thesis, University of Wyoming. [Available from University Microfilm, 305 N. Zeeb Rd., Ann Arbor, MI 48106.].

  • Matejka, T. J., and R. C. Srivastava, 1991: An improved version of the extended velocity-azimuth display analysis of single-Doppler radar data. J. Atmos. Oceanic Technol., 8 , 453466.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first in a new generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 75 , 757780.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider, 1992: Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor., 31 , 317339.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110 , 783820.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48 , 21412158.

  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111 .D02206, doi:10.1029/2004JD005694.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of the diurnal cycle of marine stratiform cloud. J. Climate, 8 , 17951809.

    • Search Google Scholar
    • Export Citation
  • Ryan, M., M. J. Post, B. Martner, J. Novak, and L. Davis, 2002: The NOAA Ron Brown’s shipboard Doppler precipitation radar. Preprints, Sixth Symp. on Integrated Observing Systems, Orlando, FL, Amer. Meteor. Soc., P1.7.

  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63 , 983997.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86 , 5157.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113 , 9691009.

    • Search Google Scholar
    • Export Citation
  • Vali, G., R. D. Kelly, J. French, S. Haimov, R. E. M. D. Leon, and A. Pazmany, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55 , 35403564.

    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., and B. Stevens, 2005: On the observed structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62 , 43274342.

    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., B. Stevens, G. Vali, and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62 , 88106.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62 , 30113033.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2006: The rate of loss of cloud condensation nuclei by coalescence in warm clouds. J. Geophys. Res., 111 .D21205, doi:10.1029/2006JD007553.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64 , 26572669.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19 , 17481764.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27 , 261279.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123 , 19411963.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., Y. L. Serra, and R. A. Houze, 2000: The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part II: Stratocumulus region. Bull. Amer. Meteor. Soc., 81 , 483490.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., R. A. Houze Jr., E. A. Smith, T. T. Wilheit, and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44 , 385415.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 761 408 207
PDF Downloads 175 54 9