Radar and Lightning Observations of Normal and Inverted Polarity Multicellular Storms from STEPS

Sarah A. Tessendorf Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
,
Steven A. Rutledge Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
, and
Kyle C. Wiens Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Kyle C. Wiens in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study discusses radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study. The Lightning Mapping Array data indicated that the charge structure of the 19 June 2000 storm was consistent with a normal polarity tripole, while the 22 June 2000 storm exhibited an overall inverted tripolar charge structure. The 19 June storm consisted of weaker convection and produced little to no hail and moderate total flash rates peaking between 80 and 120 min−1. The cells in the 22 June 2000 storm were much more vigorous, exhibited strong, broad updrafts, and produced large quantities of hail, as well as extraordinary total flash rates as high as 500 min−1. The National Lightning Detection Network (NLDN) indicated that the 19 June storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning, peaking at 10 min−1 just after two cells merged. However, the Los Alamos Sferic Array indicated that many of the positive CG strokes reported by the NLDN in the 22 June storm were intracloud discharges known as narrow bipolar events. Negative CG lightning was also observed in the 22 June storm, but typically came to ground beneath an inverted dipole in the storm anvil.

* Current affiliation: NOAA/Earth System Research Laboratory, Boulder, Colorado

Corresponding author address: Sarah A. Tessendorf, NOAA/Earth System Research Laboratory, DSRC R/CSD3, 325 Broadway, Boulder, CO 80305. Email: sarah.tessendorf@noaa.gov

Abstract

This study discusses radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study. The Lightning Mapping Array data indicated that the charge structure of the 19 June 2000 storm was consistent with a normal polarity tripole, while the 22 June 2000 storm exhibited an overall inverted tripolar charge structure. The 19 June storm consisted of weaker convection and produced little to no hail and moderate total flash rates peaking between 80 and 120 min−1. The cells in the 22 June 2000 storm were much more vigorous, exhibited strong, broad updrafts, and produced large quantities of hail, as well as extraordinary total flash rates as high as 500 min−1. The National Lightning Detection Network (NLDN) indicated that the 19 June storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning, peaking at 10 min−1 just after two cells merged. However, the Los Alamos Sferic Array indicated that many of the positive CG strokes reported by the NLDN in the 22 June storm were intracloud discharges known as narrow bipolar events. Negative CG lightning was also observed in the 22 June storm, but typically came to ground beneath an inverted dipole in the storm anvil.

* Current affiliation: NOAA/Earth System Research Laboratory, Boulder, Colorado

Corresponding author address: Sarah A. Tessendorf, NOAA/Earth System Research Laboratory, DSRC R/CSD3, 325 Broadway, Boulder, CO 80305. Email: sarah.tessendorf@noaa.gov

Save
  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 , 1397914000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2003: Characteristics of cloud-to-ground lightning in severe and nonsevere storms over the central United States from 1989–1998. J. Geophys. Res., 108 .4483, doi:10.1029/2002JD002951.

    • Search Google Scholar
    • Export Citation
  • Coleman, L. M., T. C. Marshall, M. Stolzenburg, T. Hamlin, P. R. Krehbiel, W. Rison, and R. J. Thomas, 2003: Effects of charge and electrostatic potential on lightning propagation. J. Geophys. Res., 108 .4298, doi:10.1029/2002JD002718.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , D8. 90359044.

    • Search Google Scholar
    • Export Citation
  • Grumm, R. H., J. D. Ross, and P. G. Knight, 2005: Examining severe weather events using reanalysis datasets. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., CD-ROM, P1.87.

  • Kasemir, H. W., 1960: A contribution to the electrostatic theory of lightning discharge. J. Geophys. Res., 65 , 18731878.

  • Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, M. Stanley, J. Lombardo, and D. Shown, 2000a: Inverted polarity lightning in STEPS. Eos, Trans. Amer. Geophys. Union, 81 .(Suppl.), Abstract A62D06.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000b: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81 , 2125.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerical simulations of the 29 June 2000 STEPS supercell: Microphysics, electrification, and lightning. Mon. Wea. Rev., 134 , 27342757.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130 , 24922506.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85 , 11071125.

    • Search Google Scholar
    • Export Citation
  • Le Vine, D. M., 1980: Sources of the strongest RF radiation from lightning. J. Geophys. Res., 85 , 40914095.

  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D., and Coauthors, 2002: Lightning relative to precipitation and tornadoes in a supercell storm during MEaPRS. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 423–426.

  • MacGorman, D., W. D. Rust, P. Krehbiel, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133 , 25832607.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107 .4075, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110 .D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and M. Stolzenburg, 2002: Electrical energy constraints on lightning. J. Geophys. Res., 107 .4052, doi:10.1029/2000JD000024.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., D. W. Rust, and M. Stolzenburg, 1995: Electrical structure and updraft speeds in thunderstorms over the southern Great Plains. J. Geophys. Res., 100 , 10011015.

    • Search Google Scholar
    • Export Citation
  • Mazur, V., 2002: Physical processes during development of lightning flashes. C. R. Phys., 3 , 13931409.

  • Mazur, V., and L. H. Ruhnke, 1993: Common physical processes in natural and artificially triggered lightning. J. Geophys. Res., 98 , 1291312930.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. C., and R. L. Vaughn, 1979: An economical approach for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18 , 661670.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. C., L. J. Miller, R. L. Vaughn, and H. W. Frank, 1986: On the merger of mesoscale data sets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol., 3 , 143161.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1987: The hybrid multicellular-supercellular storm—An efficient hail producer. Part II: General characteristics and implications for hail growth. J. Atmos. Sci., 44 , 20602073.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9 , 197203.

  • Perez, A. H., L. J. Wicker, and R. E. Orville, 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12 , 428437.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in Central New Mexico. Geophys. Res. Lett., 26 , 35733576.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and D. R. MacGorman, 2002: Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29 .1571, doi:10.1029/2001GL014303.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76 , 247271.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during graupel/crystal collisions. J. Geophys. Res., 103 , 1394913956.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., and Coauthors, 1999: A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res., 104 , 41894212.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., K. B. Eack, J. Harlin, M. J. Heavner, A. R. Jacobson, R. S. Massey, X. M. Shao, and K. C. Wiens, 2002: The Los Alamos Sferic Array: A research tool for lightning investigations. J. Geophys. Res., 107 .4183, doi:10.1029/2001JD000502.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., M. J. Heavner, A. R. Jacobson, X. M. Shao, R. S. Massey, R. J. Sheldon, and K. C. Wiens, 2004: A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records. Radio Sci., 39 .RS1010, doi:10.1029/2002RS002790.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions. 3. Synthesis. J. Geophys. Res., 103 , 1409714108.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnic, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62 , 41274150.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., K. C. Wiens, and S. A. Rutledge, 2007: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135 , 36653681.

    • Search Google Scholar
    • Export Citation
  • Thomas, R., P. Krehbiel, W. Rison, J. Harlin, T. Hamlin, and N. Campbell, 2003: The LMA flash algorithm. Proc. 12th Int. Conf. on Atmospheric Electricity, Versailles, France, ICAE, 655–656.

  • Thomas, R., P. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109 .D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., 2005: Kinematic, microphysical, and electrical structure and evolution of thunderstorms during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Ph.D. thesis, Colorado State University, Fort Collins, CO, 295 pp.

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Willet, J. C., J. C. Bailey, and E. P. Krider, 1989: A class of unusual lightning electric field waveforms with very strong high-frequency radiation. J. Geophys. Res., 94 , 1625516267.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94 , 1315113167.

  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527–561.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., M. E. Weber, and R. E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94 , 213220.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamics conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76 , 288306.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1803 1304 844
PDF Downloads 451 109 15