Evaluation of Precipitation from Numerical Weather Prediction Models and Satellites Using Values Retrieved from Radars

Slavko Vasić Department of Atmospheric and Oceanic Sciences, and Global Environmental and Climate Change Centre, McGill University, Montréal, Québec, Canada

Search for other papers by Slavko Vasić in
Current site
Google Scholar
PubMed
Close
,
Charles A. Lin Department of Atmospheric and Oceanic Sciences, and Global Environmental and Climate Change Centre, McGill University, Montréal, Québec, Canada

Search for other papers by Charles A. Lin in
Current site
Google Scholar
PubMed
Close
,
Isztar Zawadzki Department of Atmospheric and Oceanic Sciences, and Global Environmental and Climate Change Centre, McGill University, Montréal, Québec, Canada

Search for other papers by Isztar Zawadzki in
Current site
Google Scholar
PubMed
Close
,
Olivier Bousquet Centre de Météorologie Radar, Météo France, Paris, France

Search for other papers by Olivier Bousquet in
Current site
Google Scholar
PubMed
Close
, and
Diane Chaumont Ouranos Consortium on Regional Climatology and Adaptation to Climate Change, Montréal, Québec, Canada

Search for other papers by Diane Chaumont in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Precipitation is evaluated from two weather prediction models and satellites, taking radar-retrieved values as a reference. The domain is over the central and eastern United States, with hourly accumulated precipitation over 21 days for the models and radar, and 13 days for satellite. Conventional statistical measures and scale decomposition methods are used. The models generally underestimate strong precipitation and show nearly constant modest skill over a 24-h forecast period. The scale decomposition results show that the effective model resolution for precipitation is many times the grid size. The model predictability extends beyond a few hours for only the largest scales.

Corresponding author address: Dr. Slavko Vasić, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montréal, QC H3A 2K6, Canada. Email: slavko.vasic@mcgill.ca

Abstract

Precipitation is evaluated from two weather prediction models and satellites, taking radar-retrieved values as a reference. The domain is over the central and eastern United States, with hourly accumulated precipitation over 21 days for the models and radar, and 13 days for satellite. Conventional statistical measures and scale decomposition methods are used. The models generally underestimate strong precipitation and show nearly constant modest skill over a 24-h forecast period. The scale decomposition results show that the effective model resolution for precipitation is many times the grid size. The model predictability extends beyond a few hours for only the largest scales.

Corresponding author address: Dr. Slavko Vasić, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montréal, QC H3A 2K6, Canada. Email: slavko.vasic@mcgill.ca

Save
  • Abdella, K., and N. McFarlane, 1997: A new second-order turbulence closure scheme for the planetary boundary layer. J. Atmos. Sci., 54 , 1850–1867.

    • Search Google Scholar
    • Export Citation
  • Austin, G. L., A. Bellon, P. Dionne, and M. Roch, 1987: On the interaction between radar and satellite image nowcasting systems and mesoscale numerical models. Mesoscale Analysis and Forecasting, European Space Agency Special Publication ESA-SP 282, 225–228.

  • Baldwin, M. E., and M. S. Wandishin, 2002: Determining the resolved spatial scales of Eta model precipitation forecasts. Preprints, 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., CD-ROM, 3.2.

  • Bélair, S., A. Méthot, J. Mailhot, B. Bilodeau, A. Patoine, G. Pellerin, and J. Côté, 2000: Operational implementation of the Fritsch–Chappell convective scheme in the 24-km Canadian regional model. Wea. Forecasting, 15 , 257–274.

    • Search Google Scholar
    • Export Citation
  • Bousquet, O., C. A. Lin, and I. Zawadzki, 2006: Analysis of scale dependence of quantitative precipitation forecast verification: A case study over the Mackenzie River Basin. Quart. J. Roy. Meteor. Soc., 132 , 2107–2125.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., F. Minotti, C. Ronchi, R. M. Ypma, and O. Zeman, 1994: Second-order closure PBL model with new third-order moments: Comparison with LES data. J. Atmos. Sci., 51 , 1605–1618.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126 , 1373–1395.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 , 6377–6402.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the counter-gradient vertical heat flux. J. Geophys. Res., 77 , 5900–5904.

  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239 , 179–202.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249–280.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130 , 2859–2873.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1998: Nimrod: A system of generating automated very short range forecasts. Meteor. Appl., 5 , 1–16.

  • Harris, D., E. Foufoula-Georgiou, K. K. Droegemeier, and J. J. Levit, 2001: Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeor., 2 , 406–418.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and C-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48 , 1690–1698.

    • Search Google Scholar
    • Export Citation
  • Hunter, S. M., 1996: WSR-88D radar rainfall radar estimation: Capabilities, limitations, and potential improvements. Natl. Wea. Dig., 20 , 26–38.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927–945.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82 , 271–285.

  • Johnson, L. E., and B. G. Olsen, 1998: Assessment of quantitative precipitation forecasts. Wea. Forecasting, 13 , 75–83.

  • Knievel, J. C., D. A. Ahijevych, and K. W. Manning, 2004: Using temporal modes of rainfall to evaluate the performance of a numerical weather prediction model. Mon. Wea. Rev., 132 , 2995–3009.

    • Search Google Scholar
    • Export Citation
  • Lin, C., S. Vasić, A. Kilambi, B. Turner, and I. Zawadzki, 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett., 32 .L14801, doi:10.1029/2005GL023451.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian regional forecast system. Atmos.–Ocean, 44 , 133–149.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851–875.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and R. L. Winkler, 1987: A general framework for forecast verification. Mon. Wea. Rev., 115 , 1330–1338.

  • Murphy, A. H., and E. S. Epstein, 1989: Skill scores and correlation coefficients in model verification. Mon. Wea. Rev., 117 , 572–582.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and L. F. Bosart, 1996: The complex relationship between forecast skill and forecast value: A real-world analysis. Wea. Forecasting, 11 , 544–559.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 3019–3032.

  • Skamarock, W. C., and D. Dempsey, 2005: High-resolution winter-season NWP: Preliminary evaluation of the WRF ARW and NMM models in the DWFE forecast experiment. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., CD-ROM, 16A.3.

  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117 , 1641–1657.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129–148.

    • Search Google Scholar
    • Export Citation
  • Turner, B. J., I. Zawadzki, and U. Germann, 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43 , 231–248.

    • Search Google Scholar
    • Export Citation
  • Vasić, S., C. A. Lin, and Y. Delage, 2001: Assessment of heat flux turbulence models for flows dominated by buoyancy effects. Atmos.–Ocean, 39 , 471–484.

    • Search Google Scholar
    • Export Citation
  • Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79 , 1883–1898.

    • Search Google Scholar
    • Export Citation
  • Vicente, G., J. C. Davenport, and R. A. Scofield, 2002: The role of orographic and parallax corrections on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens., 23 , 221–230.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79 , 2079–2099.

    • Search Google Scholar
    • Export Citation
  • Zeman, O., and J. L. Lumley, 1976: Modeling buoyancy driven mixed layers. J. Atmos. Sci., 33 , 1974–1988.

  • Zilitinkevich, S., V. M. Gryanik, V. N. Lykossov, and D. V. Mironov, 1999: Third-order transport and nonlocal turbulence closures for convective boundary layers. J. Atmos. Sci., 56 , 3463–3477.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 771 429 190
PDF Downloads 193 45 2