• Asselin, R. A., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100 , 487490.

  • Butcher, J. C., 1987: The Numerical Analysis of Ordinary Differential Equations. John Wiley, 512 pp.

  • Fehlberg, E., 1970: Klassische Runge-Kutta-formeln vieter und niedrigerer ordnung mit schrittweiten-controlle und ihre anwendung auf wärmeleitungsprobleme. Computing, 6 , 6171.

    • Search Google Scholar
    • Export Citation
  • Gassmann, A., 2005: An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteor. Atmos. Phys., 88 , 2338.

    • Search Google Scholar
    • Export Citation
  • Gear, C. W., 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 253 pp.

  • Heun, K., 1900: Neue methode zur approximativen integration der differential-gleichungen einer unabhängigen veränderlichen. Z. Math. Phys., 45 , 2338.

    • Search Google Scholar
    • Export Citation
  • Hundsdorfer, W., , B. Koren, , M. van Loon, , and J. G. Verwer, 1995: A positive finite-difference advection scheme. J. Comput. Phys., 117 , 3546.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Kopal, Z., 1961: Numerical Analysis. 2d ed. John Wiley, 594 pp.

  • Lorenz, E. N., 1971: An N-cycle time-differencing scheme for stepwise numerical integration. Mon. Wea. Rev., 99 , 644648.

  • Wicker, L. J., , and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126 , 19921999.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
  • Williamson, J. H., 1980: Low storage Runge-Kutta schemes. J. Comput. Phys., 35 , 4856.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 4
PDF Downloads 14 14 4

Accuracy Considerations of Time-Splitting Methods for Models Using Two-Time-Level Schemes

View More View Less
  • 1 Science Applications International Corporation, Beltsville, and NOAA/NCEP/Environmental Modeling Center, Camp Springs, Maryland
© Get Permissions
Restricted access

Corresponding author address: Dr. R. James Purser, W/NP2 RM 207, WWBG, NOAA/NCEP, Auth Road, Camp Springs, MD 20746-4304. Email: jim.purser@noaa.gov

Corresponding author address: Dr. R. James Purser, W/NP2 RM 207, WWBG, NOAA/NCEP, Auth Road, Camp Springs, MD 20746-4304. Email: jim.purser@noaa.gov

Save