Corresponding author address: Dr. R. James Purser, W/NP2 RM 207, WWBG, NOAA/NCEP, Auth Road, Camp Springs, MD 20746-4304. Email: jim.purser@noaa.gov
Asselin, R. A. , 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100 , 487–490.
Butcher, J. C. , 1987: The Numerical Analysis of Ordinary Differential Equations. John Wiley, 512 pp.
Fehlberg, E. , 1970: Klassische Runge-Kutta-formeln vieter und niedrigerer ordnung mit schrittweiten-controlle und ihre anwendung auf wärmeleitungsprobleme. Computing, 6 , 61–71.
Gassmann, A. , 2005: An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteor. Atmos. Phys., 88 , 23–38.
Gear, C. W. , 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 253 pp.
Heun, K. , 1900: Neue methode zur approximativen integration der differential-gleichungen einer unabhängigen veränderlichen. Z. Math. Phys., 45 , 23–38.
Hundsdorfer, W. , B. Koren , M. van Loon , and J. G. Verwer , 1995: A positive finite-difference advection scheme. J. Comput. Phys., 117 , 35–46.
Klemp, J. B. , and R. B. Wilhelmson , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 1070–1096.
Kopal, Z. , 1961: Numerical Analysis. 2d ed. John Wiley, 594 pp.
Lorenz, E. N. , 1971: An N-cycle time-differencing scheme for stepwise numerical integration. Mon. Wea. Rev., 99 , 644–648.
Wicker, L. J. , and W. C. Skamarock , 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126 , 1992–1999.
Wicker, L. J. , and W. C. Skamarock , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 2088–2097.
Williamson, J. H. , 1980: Low storage Runge-Kutta schemes. J. Comput. Phys., 35 , 48–56.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 136 | 41 | 2 |
PDF Downloads | 101 | 43 | 3 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
Corresponding author address: Dr. R. James Purser, W/NP2 RM 207, WWBG, NOAA/NCEP, Auth Road, Camp Springs, MD 20746-4304. Email: jim.purser@noaa.gov
Corresponding author address: Dr. R. James Purser, W/NP2 RM 207, WWBG, NOAA/NCEP, Auth Road, Camp Springs, MD 20746-4304. Email: jim.purser@noaa.gov
Asselin, R. A. , 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100 , 487–490.
Butcher, J. C. , 1987: The Numerical Analysis of Ordinary Differential Equations. John Wiley, 512 pp.
Fehlberg, E. , 1970: Klassische Runge-Kutta-formeln vieter und niedrigerer ordnung mit schrittweiten-controlle und ihre anwendung auf wärmeleitungsprobleme. Computing, 6 , 61–71.
Gassmann, A. , 2005: An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteor. Atmos. Phys., 88 , 23–38.
Gear, C. W. , 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 253 pp.
Heun, K. , 1900: Neue methode zur approximativen integration der differential-gleichungen einer unabhängigen veränderlichen. Z. Math. Phys., 45 , 23–38.
Hundsdorfer, W. , B. Koren , M. van Loon , and J. G. Verwer , 1995: A positive finite-difference advection scheme. J. Comput. Phys., 117 , 35–46.
Klemp, J. B. , and R. B. Wilhelmson , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 1070–1096.
Kopal, Z. , 1961: Numerical Analysis. 2d ed. John Wiley, 594 pp.
Lorenz, E. N. , 1971: An N-cycle time-differencing scheme for stepwise numerical integration. Mon. Wea. Rev., 99 , 644–648.
Wicker, L. J. , and W. C. Skamarock , 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126 , 1992–1999.
Wicker, L. J. , and W. C. Skamarock , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 2088–2097.
Williamson, J. H. , 1980: Low storage Runge-Kutta schemes. J. Comput. Phys., 35 , 48–56.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 136 | 41 | 2 |
PDF Downloads | 101 | 43 | 3 |