Accuracy Considerations of Time-Splitting Methods for Models Using Two-Time-Level Schemes

R. James Purser Science Applications International Corporation, Beltsville, and NOAA/NCEP/Environmental Modeling Center, Camp Springs, Maryland

Search for other papers by R. James Purser in
Current site
Google Scholar
PubMed
Close
Restricted access

Corresponding author address: Dr. R. James Purser, W/NP2 RM 207, WWBG, NOAA/NCEP, Auth Road, Camp Springs, MD 20746-4304. Email: jim.purser@noaa.gov

Corresponding author address: Dr. R. James Purser, W/NP2 RM 207, WWBG, NOAA/NCEP, Auth Road, Camp Springs, MD 20746-4304. Email: jim.purser@noaa.gov

Save
  • Asselin, R. A. , 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100 , 487–490.

  • Butcher, J. C. , 1987: The Numerical Analysis of Ordinary Differential Equations. John Wiley, 512 pp.

  • Fehlberg, E. , 1970: Klassische Runge-Kutta-formeln vieter und niedrigerer ordnung mit schrittweiten-controlle und ihre anwendung auf wärmeleitungsprobleme. Computing, 6 , 61–71.

    • Search Google Scholar
    • Export Citation
  • Gassmann, A. , 2005: An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteor. Atmos. Phys., 88 , 23–38.

    • Search Google Scholar
    • Export Citation
  • Gear, C. W. , 1971: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 253 pp.

  • Heun, K. , 1900: Neue methode zur approximativen integration der differential-gleichungen einer unabhängigen veränderlichen. Z. Math. Phys., 45 , 23–38.

    • Search Google Scholar
    • Export Citation
  • Hundsdorfer, W. , B. Koren , M. van Loon , and J. G. Verwer , 1995: A positive finite-difference advection scheme. J. Comput. Phys., 117 , 35–46.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B. , and R. B. Wilhelmson , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 1070–1096.

    • Search Google Scholar
    • Export Citation
  • Kopal, Z. , 1961: Numerical Analysis. 2d ed. John Wiley, 594 pp.

  • Lorenz, E. N. , 1971: An N-cycle time-differencing scheme for stepwise numerical integration. Mon. Wea. Rev., 99 , 644–648.

  • Wicker, L. J. , and W. C. Skamarock , 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126 , 1992–1999.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J. , and W. C. Skamarock , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 2088–2097.

    • Search Google Scholar
    • Export Citation
  • Williamson, J. H. , 1980: Low storage Runge-Kutta schemes. J. Comput. Phys., 35 , 48–56.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 41 2
PDF Downloads 101 43 3