Assessment of Physical Parameterizations Using a Global Climate Model with Stretchable Grid and Nudging

O. Coindreau Commisariat à l’Energie Atomique, Bruyères-le-Châtel, France

Search for other papers by O. Coindreau in
Current site
Google Scholar
PubMed
Close
,
F. Hourdin Laboratoire de Météorologie Dynamique, CNRS, IPSL, Paris, France

Search for other papers by F. Hourdin in
Current site
Google Scholar
PubMed
Close
,
M. Haeffelin Laboratoire de Météorologie Dynamique, CNRS, IPSL, Paris, France

Search for other papers by M. Haeffelin in
Current site
Google Scholar
PubMed
Close
,
A. Mathieu Laboratoire de Météorologie Dynamique, CNRS, IPSL, Paris, France

Search for other papers by A. Mathieu in
Current site
Google Scholar
PubMed
Close
, and
C. Rio Laboratoire de Météorologie Dynamique, CNRS, IPSL, Paris, France

Search for other papers by C. Rio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Laboratoire de Météorologie Dynamique atmospheric general circulation model with zooming capability (LMDZ) has been used in a nudged mode to enable comparison of model outputs with routine observations and evaluate the model physical parameterizations. Simulations have been conducted with a stretched grid refined over the vicinity of Paris, France, where observations, collected at the Trappes station (Météo-France) and at the Site Instrumental de Recherche par Télédétection Atmosphérique observatory, are available. For the purpose of evaluation of physical parameterizations, the large-scale component of the modeled circulation is adjusted toward ECMWF analyses outside the zoomed area only, whereas the inside region can evolve freely. A series of sensitivity experiments have been performed with different parameterizations of land surface and boundary layer processes. Compared with previous versions of the LMDZ model, a “thermal plume model,” in association with a constant resistance to evaporation improves agreement with observations. The new parameterization significantly improves the representation of seasonal and diurnal cycles of near-surface meteorology, the day-to-day variability of planetary boundary layer height, and the cloud radiative forcing. This study emphasizes the potential of using a climate model with a nudging and zooming capability to assess model physical parameterizations.

Corresponding author address: Dr. Olivia Coindreau, CEA, DASE/LDG/SEG, BP 12, 91 680 Bruyéres-le-Châtel, France. Email: olivia_coindreau@yahoo.fr

Abstract

The Laboratoire de Météorologie Dynamique atmospheric general circulation model with zooming capability (LMDZ) has been used in a nudged mode to enable comparison of model outputs with routine observations and evaluate the model physical parameterizations. Simulations have been conducted with a stretched grid refined over the vicinity of Paris, France, where observations, collected at the Trappes station (Météo-France) and at the Site Instrumental de Recherche par Télédétection Atmosphérique observatory, are available. For the purpose of evaluation of physical parameterizations, the large-scale component of the modeled circulation is adjusted toward ECMWF analyses outside the zoomed area only, whereas the inside region can evolve freely. A series of sensitivity experiments have been performed with different parameterizations of land surface and boundary layer processes. Compared with previous versions of the LMDZ model, a “thermal plume model,” in association with a constant resistance to evaporation improves agreement with observations. The new parameterization significantly improves the representation of seasonal and diurnal cycles of near-surface meteorology, the day-to-day variability of planetary boundary layer height, and the cloud radiative forcing. This study emphasizes the potential of using a climate model with a nudging and zooming capability to assess model physical parameterizations.

Corresponding author address: Dr. Olivia Coindreau, CEA, DASE/LDG/SEG, BP 12, 91 680 Bruyéres-le-Châtel, France. Email: olivia_coindreau@yahoo.fr

Save
  • Abdella, K., and N. McFarlane, 1997: A new second-order turbulence closure scheme for the planetary boundary layers. J. Atmos. Sci., 54 , 18501867.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T., and G. Stokes, 2003: The atmospheric radiation measurement program. Phys. Today, 56 , 3845.

  • Alapaty, K. A., J. E. Pleim, S. Raman, D. S. Niyogi, and D. W. Byun, 1997: Simulation of atmospheric boundary layer processes using local and nonlocal-closure schemes. J. Appl. Meteor., 36 , 214233.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1979: A model of the thermodynamic structure of the trade-wind boundary layer: Part II: Applications. J. Atmos. Sci., 36 , 9098.

    • Search Google Scholar
    • Export Citation
  • Arakawa, R. A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Ayotte, K. W., and Coauthors, 1996: An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Bound.-Layer Meteor., 79 , 131175.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J. Atmos. Sci., 58 , 31583183.

    • Search Google Scholar
    • Export Citation
  • Chatfield, R. B., and R. A. Brost, 1987: A two-stream model of the vertical transport of trace species in the convective boundary layer. J. Geophys. Res., 92 , 1326313276.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., R. Vautard, H. Chepfer, M. Haeffelin, J. Dudhia, Y. Wanherdrick, Y. Morille, and A. Protat, 2006: The ability of MM5 to simulate ice clouds: Systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Mon. Wea. Rev., 134 , 897918.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 77 , 59005904.

  • De Rosnay, P., and J. Polcher, 1998: Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2 , 239255.

    • Search Google Scholar
    • Export Citation
  • Ducharne, A., and K. Laval, 2000: Influence of the realistic description of soil water-holding capacity on the global water cycle in a GCM. J. Climate, 13 , 43934413.

    • Search Google Scholar
    • Export Citation
  • Ducoudré, N., K. Laval, and A. Perrier, 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. Climate Dyn., 6 , 248273.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48 , 23132335.

  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parametrization. Contrib. Atmos. Phys., 53 , 3562.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73 , 19621970.

  • Ghan, S. J., L. R. Leung, and J. McCaa, 1999: A comparison of three different modeling strategies for evaluating cloud and radiation parameterizations. Mon. Wea. Rev., 127 , 19671984.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., D. Parsons, J. Duhdia, and J. Bresch, 2003: Evaluating mesoscale model predictions of clouds and radiation with SGP ARM data over a seasonal timescale. Mon. Wea. Rev., 131 , 926944.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130 , 31393172.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys., 23 , 253275.

    • Search Google Scholar
    • Export Citation
  • Hoke, J. E., and R. A. Anthes, 1976: The initialization of numerical models by a dynamic-initialization technique. Mon. Wea. Rev., 104 , 15511556.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and R. A. Boville, 1993: Local versus nonlocal boundary layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., P. Le Van, F. Forget, and O. Talagrand, 1993: Meteorological variability and the annual surface pressure cycle on Mars. J. Atmos. Sci., 50 , 36253640.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., F. Couvreux, and L. Menut, 2002: Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci., 59 , 11051123.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27 , 787813.

    • Search Google Scholar
    • Export Citation
  • Jeuken, A. B. M., P. C. Siegmund, L. C. Heijboer, J. Feichter, and L. Bengtsson, 1996: On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation. J. Geophys. Res., 101 , 1693916950.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1977: Computational aspects of numerical models for weather prediction and climate simulation. Methods Comput. Phys., 17 , 166.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19 .GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Lappen, C., and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58 , 20212036.

    • Search Google Scholar
    • Export Citation
  • Laval, K., R. Sadourny, and Y. Serafini, 1981: Land surface processes in a simplified general circulation model. Geophys. Astrophys. Fluid Dyn., 17 , 129150.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and Coauthors, 2004: The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study. Quart. J. Roy. Meteor. Soc., 130 , 33393364.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • Manabe, S., 1969: Climate and the ocean circulation. 1. The atmospheric circulation and the hydrology of the Earth’s surface. Mon. Wea. Rev., 97 , 739774.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2005: The new IPSL climate system model: IPSL-CM4. Tech. Note 26, IPSL, 82 pp. [Available online at http://dods.ipsl.jussieu.fr/omamce/IPSLCM4/DocIPSLCM4/.].

  • Mathieu, A., A. Lahellec, and A. Weill, 2004: Evaluation of a numerical weather forecast model using boundary layer cloud top temperature retrieved from AVHRR. Mon. Wea. Rev., 132 , 915928.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layer. J. Atmos. Sci., 31 , 17911806.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., 2002: Assessment of the ECMWF model cloudiness and surface radiation fields at the ARM SGP site. Mon. Wea. Rev., 130 , 257277.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., L. Smith, and Y. Fouquart, 1986: Pressure and temperature dependence of the absorption in longwave radiation parametrizations. Contrib. Atmos. Phys., 59 , 455469.

    • Search Google Scholar
    • Export Citation
  • Morille, Y., M. Haeffelin, P. Drobinski, and J. Pelon, 2007: STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J. Atmos. Oceanic Technol., in press.

  • Ohmura, A., and Coauthors, 1998: Baseline surface radiation network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79 , 21152136.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., and J. S. Chang, 1992: A non-local closure model for vertical mixing in the convective boundary layer. Atmos. Environ., 26A , 965981.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Q. Shao, and C. Moeng, 1992: A second-order bulk boundary layer model. J. Atmos. Sci., 49 , 19031923.

  • Sadourny, R., and K. Laval, 1984: January and July performance of the LMD general circulation model. New Perspectives in Climate Modelling, A. Berger and C. Nicolis, Eds., Elsevier, 173–198.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109 , 758766.

    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., P. M. A. Miranda, A. P. Siebesma, and J. Teixeira, 2004: An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130 , 33653383.

    • Search Google Scholar
    • Export Citation
  • Stone, D. A., and A. J. Weaver, 2003: Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Climate Dyn., 20 , 435445.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci., 41 , 33513367.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111 , 22242243.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Van Leer, B., 1977: Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection. J. Comput. Phys., 23 , 276299.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81 , 245269.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and B. A. Albrecht, 1990: A mean-gradient model of the dry convective boundary layer. J. Atmos. Sci., 47 , 126138.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 155 7
PDF Downloads 216 103 5