Comparison of Narrow Bipolar Events with Ordinary Lightning as Proxies for the Microwave-Radiometry Ice-Scattering Signature

Abram R. Jacobson University of Washington, Seattle, Washington, and Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Abram R. Jacobson in
Current site
Google Scholar
PubMed
Close
,
William Boeck Niagara University, Lewiston, New York, and Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by William Boeck in
Current site
Google Scholar
PubMed
Close
, and
Christopher Jeffery Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Christopher Jeffery in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The narrow bipolar event (NBE) is a unique lightning discharge that has a short (∼10 μs) overall duration, lacks a prior leader phase, and produces too little light output to be visible by optical lightning detectors on satellites. NBEs thus have basic differences from ordinary lightning discharges, which occur in flashes lasting up to a fraction of a second, carry significant current in a “stroke” only after a leader stage that prepares the conductive channel, and produce copious light that is recordable from space. Thus, the authors are motivated to determine whether the meteorological setting of NBEs differs from, or is similar to, that of ordinary lightning. A previous paper started this project of comparing NBEs with ordinary lightning by comparing the placement of either type of lightning within spatial structures of cloud depth, as revealed by infrared cloud-top temperature. That previous study employed lightning data from the Los Alamos Sferic Array (LASA) in Florida. The present paper extends this approach to comparing LASA NBEs with ordinary lightning events’ spatial relationships to radiometric cloud imagery from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) 85-GHz channels. This form of radiometric imagery reveals the location of deep, active convective cores with more acute spatial selectivity than does the infrared cloud-top temperature. It was found that the behaviors of NBEs and ordinary lighting are, once again, indistinguishable, but with regard this time to proximity to deep convective cores as revealed by TMI.

Corresponding author address: Abram R. Jacobson, Earth and Space Sciences, Box 351310, Johnson Hall, University of Washington, 4000 Avenue NE, Seattle, WA 98195-1310. Email: abramj@u.washington.edu

Abstract

The narrow bipolar event (NBE) is a unique lightning discharge that has a short (∼10 μs) overall duration, lacks a prior leader phase, and produces too little light output to be visible by optical lightning detectors on satellites. NBEs thus have basic differences from ordinary lightning discharges, which occur in flashes lasting up to a fraction of a second, carry significant current in a “stroke” only after a leader stage that prepares the conductive channel, and produce copious light that is recordable from space. Thus, the authors are motivated to determine whether the meteorological setting of NBEs differs from, or is similar to, that of ordinary lightning. A previous paper started this project of comparing NBEs with ordinary lightning by comparing the placement of either type of lightning within spatial structures of cloud depth, as revealed by infrared cloud-top temperature. That previous study employed lightning data from the Los Alamos Sferic Array (LASA) in Florida. The present paper extends this approach to comparing LASA NBEs with ordinary lightning events’ spatial relationships to radiometric cloud imagery from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) 85-GHz channels. This form of radiometric imagery reveals the location of deep, active convective cores with more acute spatial selectivity than does the infrared cloud-top temperature. It was found that the behaviors of NBEs and ordinary lighting are, once again, indistinguishable, but with regard this time to proximity to deep convective cores as revealed by TMI.

Corresponding author address: Abram R. Jacobson, Earth and Space Sciences, Box 351310, Johnson Hall, University of Washington, 4000 Avenue NE, Seattle, WA 98195-1310. Email: abramj@u.washington.edu

Save
  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94 , 1332913337.

    • Search Google Scholar
    • Export Citation
  • Gurevich, A. V., K. P. Zybin, and R. A. Roussel-Dupré, 1999: Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers. Phys. Lett., 254 , 7987.

    • Search Google Scholar
    • Export Citation
  • Holden, D. N., C. P. Munson, and J. C. Devenport, 1995: Satellite observations of transionospheric pulse pairs. Geophys. Res. Lett., 22 , 889892.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., 2003a: Relationship of intracloud-lightning radiofrequency power to lightning-storm height, as observed by the FORTE satellite. J. Geophys. Res., 108 .4204, doi:1029/2002JD002956.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., 2003b: How do the strongest radio pulses from thunderstorms relate to lightning flashes? J. Geophys. Res., 108 .4778, doi:10.1029/2003JD003936.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., and T. E. L. Light, 2003: Bimodal radiofrequency pulse distribution of intracloud-lightning signals recorded by the FORTE satellite. J. Geophys. Res., 108 .4266, doi:10.1029/2002JD002613.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., and M. J. Heavner, 2005: Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection. Mon. Wea. Rev., 133 , 11441154.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and L. Giglio, 1994a: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor., 33 , 318.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and L. Giglio, 1994b: A passive microwave technique for estimating rainfall and vertical structure information from space. Part II: Application to SSM/I data. J. Appl. Meteor., 33 , 1934.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Light, T. E. L., and A. R. Jacobson, 2002: Characteristics of impulsive VHF lightning observed by the FORTE satellite. J. Geophys. Res., 107 .4756, doi:1029/2001/JD001585.

    • Search Google Scholar
    • Export Citation
  • Massey, R. S., and D. N. Holden, 1995: Phenomenology of transionospheric pulse pairs. Radio Sci., 30 , 16451659.

  • Massey, R. S., D. N. Holden, and X-M. Shao, 1998: Phenomenology of transionospheric pulse pairs: Further observations. Radio Sci., 33 , 17551761.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice-scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124 , 24172437.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution of tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-MHz ice-scattering signature. J. Appl. Meteor., 38 , 596606.

    • Search Google Scholar
    • Export Citation
  • Molinie, G., and A. R. Jacobson, 2004: Cloud-to-ground lightning and cloud top brightness temperature over the contiguous United States. J. Geophys. Res., 109 .D13106, doi:10.1029/2003JD003593.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32 .L14819, doi:10.1029/2005GL023236.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2002: Numerical Recipes in C. ++. Cambridge University Press, 1032 pp.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., J. R. Pardo, M. I. Mishchenko, and W. B. Rossow, 2001: Microwave polarized signatures generated within cloud systems: Special Sensor Microwave Imager (SSM/I) observations interpreted with radiative transfer simulations. J. Geophys. Res., 106 , 2824328258.

    • Search Google Scholar
    • Export Citation
  • Coauthors, 1999: A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res., 104 , 41894212.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., K. B. Eack, J. Harlin, M. J. Heavner, A. R. Jacobson, R. S. Massey, X. M. Shao, and K. C. Wiens, 2002: The Los Alamos Sferic Array: A research tool for lightning investigations. J. Geophys. Res., 107 .4183, doi:10.1029/2001JD000502.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., M. J. Heavner, A. R. Jacobson, X. M. Shao, R. S. Massey, R. J. Sheldon, and K. C. Wiens, 2004: A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records. Radio Sci., 39 .RS1010, doi:10.1029/2002RS002790.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31 , 506531.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6 , 254273.

    • Search Google Scholar
    • Export Citation
  • Suszcynsky, D. M., and M. J. Heavner, 2003: Narrow bipolar events as indicators of thunderstorm convective strength. Geophys. Res. Lett., 30 .1879, doi:10.1029/2003GL017834.

    • Search Google Scholar
    • Export Citation
  • Suszcynsky, D. M., A. Jacobson, J. Fitzgerald, C. Rhodes, E. Tech, and D. Roussel-Dupre, 2000: Satellite-based global lightning and severe storm monitoring using VHF receivers. Eos, Trans. Amer. Geophys. Union, 81 , F91.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., and E. Zipser, 2001: Lightning and SSM/I-ice-scattering mesoscale convective systems in the global Tropics. J. Appl. Meteor., 40 , 9831002.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130 , 802824.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., S. J. Heckman, D. J. Boccippio, H. J. Christian, and Z-I. Kawasaki, 2001: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res., 106 , 2408924095.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., S. Heckman, K. Driscoll, D. Boccippio, H. Christian, and Z-I. Kawasaki, 2002: Cross-sensor comparison of the Lightning Imaging Sensor (LIS). Int. J. Remote Sens., 23 , 27032712.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and P. J. Guetter, 1977: Determination of rainfall distributions from microwave radiation measured by the Nimbus 6 ESMR. J. Appl. Meteor., 16 , 437442.

    • Search Google Scholar
    • Export Citation
  • Wiedner, M., C. Prigent, J. R. Pardo, O. Nuissier, J-P. Charboureau, J-P. Pinty, and P. Mascart, 2004: Modeling of passive microwave responses in convective situations using output data from mesoscale models: Comparison with TRMM/TMI satellite observations. J. Geophys. Res., 109 .D06124, doi:10.029/2003JD004280.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1985: Large scale charge separation in thunderclouds. J. Geophys. Res., 90 , 60136025.

  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527–561.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 41 5
PDF Downloads 86 32 6