A Data Assimilation Case Study Using a Limited-Area Ensemble Kalman Filter

Sébastien Dirren University of Washington, Seattle, Washington

Search for other papers by Sébastien Dirren in
Current site
Google Scholar
PubMed
Close
,
Ryan D. Torn University of Washington, Seattle, Washington

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
, and
Gregory J. Hakim University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensemble Kalman filter (EnKF) data assimilation experiments are conducted on a limited-area domain over the Pacific Northwest region of the United States, using the Weather Research and Forecasting model. Idealized surface pressure, radiosoundings, and aircraft observations are assimilated every 6 h for a 7-day period in January 2004. The objectives here are to study the performance of the filter in constraining analysis errors with a relatively inhomogeneous, sparse-observation network and to explore the potential for such a network to serve as the basis for a real-time EnKF system dedicated to the Pacific Northwest region of the United States. When only a single observation type is assimilated, results show that the ensemble-mean analysis error and ensemble spread (standard deviation) are significantly reduced compared to a control ensemble without assimilation for both observed and unobserved variables. Analysis errors are smaller than background errors over nearly the entire domain when averaged over the 7-day period. Moreover, comparisons of background errors and observation increments at each assimilation step suggest that the flow-dependent filter corrections are accurate in both scale and amplitude. An illustrative example concerns a misspecified mesoscale 500-hPa short-wave trough moving along the British Columbia coast, which is corrected by surface pressure observations alone. The relative impact of each observation type upon different variables and vertical levels is also discussed.

Corresponding author address: Dr. Sébastien Dirren, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: sebastien.dirren@alumni.ethz.ch

Abstract

Ensemble Kalman filter (EnKF) data assimilation experiments are conducted on a limited-area domain over the Pacific Northwest region of the United States, using the Weather Research and Forecasting model. Idealized surface pressure, radiosoundings, and aircraft observations are assimilated every 6 h for a 7-day period in January 2004. The objectives here are to study the performance of the filter in constraining analysis errors with a relatively inhomogeneous, sparse-observation network and to explore the potential for such a network to serve as the basis for a real-time EnKF system dedicated to the Pacific Northwest region of the United States. When only a single observation type is assimilated, results show that the ensemble-mean analysis error and ensemble spread (standard deviation) are significantly reduced compared to a control ensemble without assimilation for both observed and unobserved variables. Analysis errors are smaller than background errors over nearly the entire domain when averaged over the 7-day period. Moreover, comparisons of background errors and observation increments at each assimilation step suggest that the flow-dependent filter corrections are accurate in both scale and amplitude. An illustrative example concerns a misspecified mesoscale 500-hPa short-wave trough moving along the British Columbia coast, which is corrected by surface pressure observations alone. The relative impact of each observation type upon different variables and vertical levels is also discussed.

Corresponding author address: Dr. Sébastien Dirren, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: sebastien.dirren@alumni.ethz.ch

Save
  • Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Mon. Wea. Rev., 129 , 28842903.

  • Barker, D. M., W. Huang, Y-R. Guo, and Q. N. Xiao, 2004: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129 , 420436.

    • Search Google Scholar
    • Export Citation
  • Bormann, N., S. Saarinen, G. Kelly, and J-N. Thépaut, 2003: The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Wea. Rev., 131 , 706718.

    • Search Google Scholar
    • Export Citation
  • Derber, J., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF Global Data Assimilation System. Tellus, 51 , 195221.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132 , 19822005.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 , 1014310162.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2005: Ensemble-based atmospheric data assimilation: A tutorial. Predictability of Weather and Climate, T. Palmer, and R. Hagedorn, Eds., Cambridge University Press, 124–156.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Synder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129 , 27762790.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126 , 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129 , 123137.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with the ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133 , 604620.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., and R. S. Bucy, 1961: New results in linear filtering and prediction theory. J. Basic Eng., 83D , 3545.

  • Keppenne, C. L., and M. M. Rienecker, 2002: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev., 130 , 29512965.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130 , 27912808.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1988: The impact of ensemble forecasts on predictability. Quart. J. Roy. Meteor. Soc., 114 , 89125.

  • Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S. T. Wanzong, C. S. Velden, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78 , 11211133.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., A. McNally, E. Andersson, P. Courtier, P. Unden, J. Eyre, A. Hollingsworth, and F. Bouttier, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124 , 18091829.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Tech. Note 468+STR, National Center for Atmospheric Research, Boulder, CO, 88 pp.

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for a limited-area ensemble Kalman filter. Mon. Wea. Rev., 134 , 24902502.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130 , 19131924.

  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132 , 11901200.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132 , 12381253.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 49 5
PDF Downloads 109 37 4