Environmental Control of Cloud-to-Ground Lightning Polarity in Severe Storms

Lawrence D. Carey Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
and
Kurt M. Buffalo Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Kurt M. Buffalo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, it is hypothesized that the mesoscale environment can indirectly control the cloud-to-ground (CG) lightning polarity of severe storms by directly affecting their structural, dynamical, and microphysical properties, which in turn directly control cloud electrification and ground flash polarity. A more specific hypothesis, which has been supported by past observational and laboratory charging studies, suggests that broad, strong updrafts and associated large liquid water contents in severe storms lead to the generation of an inverted charge structure and enhanced +CG lightning production. The corollary is that environmental conditions favoring these kinematic and microphysical characteristics should support severe storms generating an anomalously high (>25%) percentage of +CG lightning (i.e., positive storms) while environmental conditions relatively less favorable should sustain storms characterized by a typical (≤25%) percentage of +CG lightning (i.e., negative storms). Forty-eight inflow proximity soundings were analyzed to characterize the environment of nine distinct mesoscale regions of severe storms (4 positive and 5 negative) on 6 days during May–June 2002 over the central United States. This analysis clearly demonstrated significant and systematic differences in the mesoscale environments of positive and negative storms, which were consistent with the stated hypothesis. When compared to negative storms, positive storms occurred in environments associated with a drier low to midtroposphere, higher cloud-base height, smaller warm cloud depth, stronger conditional instability, larger 0–3 km AGL wind shear, stronger 0–2 km AGL storm relative wind speed, and larger buoyancy in the mixed-phase zone, at a statistically significant level. Differences in the warm cloud depth of positive and negative storms were by far the most dramatic, suggesting an important role for this parameter in controlling CG lightning polarity. In this study, strong correlations between the mesoscale environment and CG lightning polarity were demonstrated. However, causality could not be verified due to a lack of in situ observations to confirm the hypothesized microphysical, dynamical, and electrical responses to variations in environmental conditions that ultimately determined the dominant CG polarity. Future observational field programs and cloud modeling studies should focus on these critical intermediary processes.

* Current affiliation: NOAA/National Weather Service, Weather Forecast Office, Hastings, Nebraska

Corresponding author address: Dr. Lawrence D. Carey, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: larry_carey@tamu.edu

Abstract

In this study, it is hypothesized that the mesoscale environment can indirectly control the cloud-to-ground (CG) lightning polarity of severe storms by directly affecting their structural, dynamical, and microphysical properties, which in turn directly control cloud electrification and ground flash polarity. A more specific hypothesis, which has been supported by past observational and laboratory charging studies, suggests that broad, strong updrafts and associated large liquid water contents in severe storms lead to the generation of an inverted charge structure and enhanced +CG lightning production. The corollary is that environmental conditions favoring these kinematic and microphysical characteristics should support severe storms generating an anomalously high (>25%) percentage of +CG lightning (i.e., positive storms) while environmental conditions relatively less favorable should sustain storms characterized by a typical (≤25%) percentage of +CG lightning (i.e., negative storms). Forty-eight inflow proximity soundings were analyzed to characterize the environment of nine distinct mesoscale regions of severe storms (4 positive and 5 negative) on 6 days during May–June 2002 over the central United States. This analysis clearly demonstrated significant and systematic differences in the mesoscale environments of positive and negative storms, which were consistent with the stated hypothesis. When compared to negative storms, positive storms occurred in environments associated with a drier low to midtroposphere, higher cloud-base height, smaller warm cloud depth, stronger conditional instability, larger 0–3 km AGL wind shear, stronger 0–2 km AGL storm relative wind speed, and larger buoyancy in the mixed-phase zone, at a statistically significant level. Differences in the warm cloud depth of positive and negative storms were by far the most dramatic, suggesting an important role for this parameter in controlling CG lightning polarity. In this study, strong correlations between the mesoscale environment and CG lightning polarity were demonstrated. However, causality could not be verified due to a lack of in situ observations to confirm the hypothesized microphysical, dynamical, and electrical responses to variations in environmental conditions that ultimately determined the dominant CG polarity. Future observational field programs and cloud modeling studies should focus on these critical intermediary processes.

* Current affiliation: NOAA/National Weather Service, Weather Forecast Office, Hastings, Nebraska

Corresponding author address: Dr. Lawrence D. Carey, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: larry_carey@tamu.edu

Save
  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13 , 870877.

  • Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains. Mon. Wea. Rev., 111 , 20342046.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and D. R. MacGorman, 1998: Evolution of cloud-to-ground lightning characteristics and storm structure in the Spearman, Texas, tornadic supercells of 31 May 1990. Mon. Wea. Rev., 126 , 14511467.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129 , 108122.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108 , 10461053.

  • Branick, M. L., and C. A. Doswell III, 1992: An observation of the relationship between supercell structure and lightning ground-strike polarity. Wea. Forecasting, 7 , 143149.

    • Search Google Scholar
    • Export Citation
  • Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti, 1982: The electrical structure of the Hokuriku winter thunderstorms. J. Geophys. Res., 87 , 12071215.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. B., C. A. Doswell III, and R. B. Wilhelmson, 1994a: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122 , 126136.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. B., C. A. Doswell III, and J. Cooper, 1994b: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606618.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: Some inferences about the updraft within a severe local storm. J. Atmos. Sci., 22 , 669677.

  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 , 1397914000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2003: Characteristics of cloud-to-ground lightning in severe and nonsevere storms over the central United States from 1989–1998. J. Geophys. Res., 108 .4483, doi:10.1029/2002JD002951.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., W. A. Petersen, and S. A. Rutledge, 2003a: Evolution of cloud-to-ground lightning and storm structure in the Spencer, SD, supercell of 30 May 1998. Mon. Wea. Rev., 131 , 18111831.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, and W. A. Petersen, 2003b: The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989–98. Mon. Wea. Rev., 131 , 12111228.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110 .D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002a: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17 , 885890.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., H. E. Brooks, and J. A. Hart, 2002b: Baseline climatology of sounding derived parameters associated with deep, moist convection. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 643–646.

  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., J. A. Cramer, C. J. Biagi, E. P. Krider, J. Jerauld, M. Uman, and V. Rakov, 2006: The U.S. National Lightning Detection Network: Post-upgrade status. Preprints, Second Conf. on the Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, P6.1.

  • Curran, E. B., and W. D. Rust, 1992: Positive ground flashes produced by low-precipitation thunderstorms in Oklahoma on 26 April 1984. Mon. Wea. Rev., 120 , 544553.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., D. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Doswell III, C. A., and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 28, Amer. Geophys. Union, 161–172.

  • Doswell III, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 619623.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130 , 23492372.

    • Search Google Scholar
    • Export Citation
  • Hart, J. A., and W. D. Korotky, 1991: The SHARP workstation v1. 50 user’s guide. National Weather Service, NOAA, 30 pp. [Available from NWS Eastern Region Headquarters, Scientific Services Division, 630 Johnson Ave., Bohemia, NY 11716.].

  • Heckert, N. A., and J. J. Filliben, 2003: NIST Handbook 148: DATAPLOT reference manual, Volume I: Commands. National Institute of Standards and Technology Handbook Series, June 2003. [Available online at http://www.itl.nist.gov/div898/software/dataplot/refman1/homepage.htm.].

  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft-hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109 , 609630.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46 , 621640.

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structures in the convective boundary layer. J. Atmos. Sci., 33 , 21522169.

    • Search Google Scholar
    • Export Citation
  • Knapp, D. I., 1994: Using cloud-to-ground lightning data to identify tornadic thunderstorm signatures and nowcast severe weather. Natl. Wea. Digest, 19 , 3542.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–248.

  • Knupp, K. R., S. Peach, and S. Goodman, 2003: Variations in cloud-to-ground lightning characteristics among three adjacent tornadic supercell storms over the Tennessee valley region. Mon. Wea. Rev., 131 , 172188.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., R. J. Thomas, W. Rison, T. Hamlin, J. Harlin, and M. Davis, 2000: GPS-based mapping system reveals lightning inside storms. Eos, Trans. Amer. Geophys. Union, 81 , 2125.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130 , 24922506.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2006: Cloud-to-ground lightning downwind of the 2002 Hayman forest fire in Colorado. Geophys. Res. Lett., 33 .L03804, doi:10.1029/2005GL024608.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85 , 11071126.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 , 31833193.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1996: Reply. J. Atmos. Sci., 53 , 12121214.

  • Lyons, W. A., T. E. Nelson, E. R. Williams, J. Cramer, and T. Turner, 1998: Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke. Science, 282 , 7781.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and K. E. Nielsen, 1991: Cloud-to-ground-lightning in a tornadic storm on 8 May 1986. Mon. Wea. Rev., 119 , 15571574.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122 , 16711697.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., W. D. Rust, P. Krehbiel, W. Krehbiel, W. Rison, E. Bruning, and K. Wiens, 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133 , 25832607.

    • Search Google Scholar
    • Export Citation
  • McCarthy, J., 1974: Field verification of the relationship between entrainment rate and cumulus cloud diameter. J. Atmos. Sci., 31 , 10281039.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr., E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129 , 664687.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr., E. W., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130 , 17221748.

    • Search Google Scholar
    • Export Citation
  • McCaul Jr., E. W., C. Cohen, and C. Kirkpatrick, 2005: The sensitivity of simulated storm structure, intensity, and precipitation efficiency to environmental temperature. Mon. Wea. Rev., 133 , 30153037.

    • Search Google Scholar
    • Export Citation
  • Michaud, L. M., 1996: Comments on “Convective available potential energy in the environment of oceanic and continental clouds.”. J. Atmos. Sci., 53 , 12091211.

    • Search Google Scholar
    • Export Citation
  • Michaud, L. M., 1998: Entrainment and detrainment required to explain updraft properties and work dissipation. Tellus, 50A , 283301.

  • Moller, A. R., 2001: Severe local storm forecasting. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 433–480.

  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102 , 373394.

    • Search Google Scholar
    • Export Citation
  • Murray, N. D., R. E. Orville, and G. R. Huffines, 2000: Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys. Res. Lett., 27 , 22492252.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129 , 11791193.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., R. W. Henderson, and L. F. Bosart, 1988: Bipole patterns revealed by lightning locations in mesoscale storm systems. Geophys. Res. Lett., 15 , 129132.

    • Search Google Scholar
    • Export Citation
  • Perez, A. H., L. J. Wicker, and R. E. Orville, 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12 , 428437.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18 , 530535.

  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126 , 24062421.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117 , 518535.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2003: Closing the 5-year circle: From cloud seeding to space and back to climate change through precipitation physics. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 59–80.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45 , 463485.

  • Rust, W. D., and D. R. MacGorman, 2002: Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett., 29 .1571, doi:10.1029/2001GL014303.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103 , 1394913956.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Seimon, A., 1993: Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990. Bull. Amer. Meteor. Soc., 74 , 189203.

    • Search Google Scholar
    • Export Citation
  • Smith, S. B., J. G. LaDue, and D. R. MacGorman, 2000: The relationship between cloud-to-ground lightning polarity and surface equivalent potential temperature during three tornadic outbreaks. Mon. Wea. Rev., 128 , 33203328.

    • Search Google Scholar
    • Export Citation
  • Stephens, M. A., 1974: EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc., 69 , 730737.

  • Stolzenburg, M., 1990: Characteristics of the bipolar pattern of lightning locations observed in 1988 thunderstorms. Bull. Amer. Meteor. Soc., 71 , 13311338.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., 1994: Observations of high ground flash densities of positive lightning in summertime thunderstorms. Mon. Wea. Rev., 122 , 17401750.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions 3. Synthesis. J. Geophys. Res., 103 , 1409714108.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 12431261.

    • Search Google Scholar
    • Export Citation
  • Wacker, R. S., and R. E. Orville, 1999a: Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade, 1, Observations. J. Geophys. Res., 104 , 21512158.

    • Search Google Scholar
    • Export Citation
  • Wacker, R. S., and R. E. Orville, 1999b: Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade, 2, Theory. J. Geophys. Res., 104 , 21592162.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc. 331–358.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61 , 361382.

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62 , 41514177.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94 , 1315113167.

  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527–561.

  • Williams, E. R., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121 , 2136.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity. C. R. Phys., 3 , 12771292.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107 .8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., V. Mushtak, D. Rosenfeld, S. Goodman, and D. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76 , 288306.

    • Search Google Scholar
    • Export Citation
  • Wilson, C. T. R., 1920: Investigations on lightning discharges and on the electric field of thunderstorms. Philos. Trans. Roy. Soc. London, 221A , 73115.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 2003: Some views on “Hot Towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1588 697 38
PDF Downloads 611 177 14