Latitude–Height Structure of the Atmospheric Angular Momentum Cycle Associated with the Madden–Julian Oscillation

Joseph Egger Meteorologisches Institut, Universität München, Munich, Germany

Search for other papers by Joseph Egger in
Current site
Google Scholar
PubMed
Close
and
Klaus Weickmann Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Klaus Weickmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The angular momentum cycle of the Madden–Julian oscillation is analyzed by regressing the zonally averaged axial angular momentum (AAM) budget including fluxes and torques against the first two principal components P1 and P2 of the empirical orthogonal functions (EOFs) of outgoing longwave radiation (OLR). The maximum of P1 coincides with an OLR minimum near 150°E and a shift from anomalously negative AAM to positive AAM in the equatorial troposphere. AAM anomalies of one sign develop first in the upper-equatorial troposphere and then move downward and poleward to the surface of the subtropics within two weeks. During the same time the opposite sign AAM anomaly develops in the upper-equatorial troposphere. The tropical troposphere is warming when P1 approaches its maximum while the stratosphere is cooling. The torques are largest in the subtropics and are linked with the downward and poleward movement of AAM anomalies. The evolution is conveniently summarized using a time–height depiction of the global mean AAM and vertical flux anomaly.

Corresponding author address: Joseph Egger, Meteorologisches Institut der Universität München, Theresienstr. 37, 80333 Munich, Germany. Email: J.Egger@lrz.uni-muenchen.de

Abstract

The angular momentum cycle of the Madden–Julian oscillation is analyzed by regressing the zonally averaged axial angular momentum (AAM) budget including fluxes and torques against the first two principal components P1 and P2 of the empirical orthogonal functions (EOFs) of outgoing longwave radiation (OLR). The maximum of P1 coincides with an OLR minimum near 150°E and a shift from anomalously negative AAM to positive AAM in the equatorial troposphere. AAM anomalies of one sign develop first in the upper-equatorial troposphere and then move downward and poleward to the surface of the subtropics within two weeks. During the same time the opposite sign AAM anomaly develops in the upper-equatorial troposphere. The tropical troposphere is warming when P1 approaches its maximum while the stratosphere is cooling. The torques are largest in the subtropics and are linked with the downward and poleward movement of AAM anomalies. The evolution is conveniently summarized using a time–height depiction of the global mean AAM and vertical flux anomaly.

Corresponding author address: Joseph Egger, Meteorologisches Institut der Universität München, Theresienstr. 37, 80333 Munich, Germany. Email: J.Egger@lrz.uni-muenchen.de

Save
  • Anderson, J., and R. Rosen, 1983: The latitude-height structure of 40–50 day variations in atmospheric angular momenta. J. Atmos. Sci., 40 , 15841591.

    • Search Google Scholar
    • Export Citation
  • Biello, J., and A. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62 , 16941721.

  • Egger, J., and K-P. Hoinka, 2004: Axial angular momentum: Vertical fluxes and response to torques. Mon. Wea. Rev., 132 , 12941305.

  • Egger, J., and K-P. Hoinka, 2005: Torques and the related meridional and vertical fluxes of axial angular momentum. Mon. Wea. Rev., 133 , 621633.

    • Search Google Scholar
    • Export Citation
  • Hendon, H., 1995: Length of day changes associated with the Madden–Julian oscillation. J. Atmos. Sci., 52 , 23732382.

  • Hendon, H., and J. Glick, 1997: Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J. Climate, 10 , 647661.

    • Search Google Scholar
    • Export Citation
  • Kang, I-S., and K-M. Lau, 1994: Principal modes of atmospheric circulation anomalies associated with global angular momentum fluctuations. J. Atmos. Sci., 51 , 11941205.

    • Search Google Scholar
    • Export Citation
  • Langley, R., R. King, I. Shapiro, R. Rosen, and D. Salstein, 1981: Atmospheric angular momentum and the length of day: A common fluctuation with a period near 50 days. Nature, 294 , 730732.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Rosen, R., and D. Salstein, 1983: Variations in atmospheric angular momentum on global and regional scales and length of day. J. Geophys. Res., 88 , 54515470.

    • Search Google Scholar
    • Export Citation
  • Sperber, K., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131 , 30183037.

  • Sperber, K., S. Gualdi, S. Leguthke, and V. Gayler, 2005: The Madden-Julian oscillation in ECHAM coupled and uncoupled general circulation models. Climate Dyn., 25 , 117140.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., 2003: Mountains, the global frictional torque, and the circulation over the Pacific–North American region. Mon. Wea. Rev., 131 , 26082622.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., and P. Sardeshmukh, 1994: The atmospheric angular momentum cycle associated with a Madden–Julian oscillation. J. Atmos. Sci., 51 , 31943208.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., S. Khalsa, and J. Eischeid, 1992: The atmospheric angular momentum cycle during the tropical Madden–Julian oscillation. Mon. Wea. Rev., 120 , 22522263.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., G. Kiladis, and P. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54 , 14451461.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., W. Robinson, and C. Penland, 2000: Stochastic and oscillatory forcing of global atmospheric angular momentum. J. Geophys. Res., 105 , 1554315557.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43 .RG2003, doi:10:1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 354 135 13
PDF Downloads 249 99 10