• Atlas, D., R. Tatehira, R. C. Srivastava, W. Marker, and R. E. Carbone, 1969: Precipitation-induced mesoscale wind perturbations in the melting layer. Quart. J. Roy. Meteor. Soc., 95 , 544560.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., and A. C. Bemis, 1950: A quantitative study of the brightband in radar precipitation echoes. J. Meteor., 7 , 145151.

  • Blier, W., J. P. Monteverdi, and J. Null, 2005: The historic San Francisco flash flood event of 25 February 2004. Preprints, Sixth Conf. on Coastal Atmospheric and Oceanic Processes, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 6.1.

  • Brandes, E. A., and K. Ikeda, 2004: Freezing level estimation with polarimetric radar. J. Appl. Meteor., 43 , 15411553.

  • Carter, D. A., K. S. Gage, W. L. Ecklund, W. M. Angevine, P. E. Johnston, A. C. Riddle, J. Wilson, and C. R. Williams, 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30 , 9971001.

    • Search Google Scholar
    • Export Citation
  • Drummond, F. J., R. R. Rogers, S. A. Cohn, W. L. Ecklund, D. A. Carter, and J. S. Wilson, 1996: A new look at the melting layer. J. Atmos. Sci., 53 , 759769.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52 , 838851.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., G. L. Austin, and D. Tees, 1992: The accuracy of rainfall estimates by radar as a function of range. Quart. J. Roy. Meteor. Soc., 118 , 435453.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., E. A. Brandes, and R. M. Rasmussen, 2005: Polarimetric radar observations of multiple freezing levels. J. Atmos. Sci., 62 , 36243636.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Martner, B. E., J. B. Snider, R. J. Zamora, G. P. Byrd, T. A. Niziol, and P. I. Joe, 1993: A remote-sensing view of a freezing rain storm. Mon. Wea. Rev., 121 , 25632577.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., K. A. Clark, S. Y. Matrosov, W. C. Campbell, and J. S. Gibson, 2001: NOAA/ETL’s polarization-upgraded X-band “Hydro” radar. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 101–103.

  • Neiman, P. J., and M. A. Shapiro, 1989: Retrieving horizontal temperature gradients and advections from single-station wind profiler observations. Wea. Forecasting, 4 , 222233.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41 , 32273237.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56 , 35733592.

  • White, A. B., J. R. Jordan, B. E. Martner, F. M. Ralph, and B. W. Bartram, 2000: Extending the dynamic range of an S-band radar for cloud and precipitation studies. J. Atmos. Oceanic Technol., 17 , 12261234.

    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19 , 687697.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46 , 20082025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 53 3
PDF Downloads 65 46 2

Collocated Radar and Radiosonde Observations of a Double-Brightband Melting Layer in Northern California

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado
Restricted access

Abstract

A strong elevated temperature inversion in a landfalling winter storm in northern California produced two simultaneous melting layers with associated radar bright bands. The storm was observed with scanning and profiling radars. Serial radiosonde launches from the scanning radar site precisely documented the evolving temperature structure of the air mass that produced the double bright band. The radiosonde and radar observations, which were coincident in location and time, clearly illustrate the cause (two melting layers) and effect (two bright bands) of this unusual phenomenon. An automated algorithm for determining the melting-layer height from profiling radar data was tested on this situation. In its operational form, the algorithm detects only the lower melting layer, but in modified form it is capable of detecting both melting layers simultaneously.

Corresponding author address: Brooks E. Martner, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. Email: brooks.martner@noaa.gov

Abstract

A strong elevated temperature inversion in a landfalling winter storm in northern California produced two simultaneous melting layers with associated radar bright bands. The storm was observed with scanning and profiling radars. Serial radiosonde launches from the scanning radar site precisely documented the evolving temperature structure of the air mass that produced the double bright band. The radiosonde and radar observations, which were coincident in location and time, clearly illustrate the cause (two melting layers) and effect (two bright bands) of this unusual phenomenon. An automated algorithm for determining the melting-layer height from profiling radar data was tested on this situation. In its operational form, the algorithm detects only the lower melting layer, but in modified form it is capable of detecting both melting layers simultaneously.

Corresponding author address: Brooks E. Martner, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. Email: brooks.martner@noaa.gov

Save