Abstract
In recent years, there has been a steady increase in the emphasis on routine seasonal climate predictions and their potential for enhancing societal benefits and mitigating losses related to climate extremes. It is also suggested by the users, as well as by the producers of climate predictions, that for informed decision making, real-time seasonal climate predictions should be accompanied by a corresponding level of skill estimated from a sequence of the past history of forecasts. In this paper it is discussed whether conveying skill information to the user community can indeed deliver the promised benefits or whether issues inherent in the estimates of seasonal prediction skill may still lead to potential misinterpretation of the information content associated with seasonal predictions. Based on the analysis of atmospheric general circulation model simulations, certain well-known, but often underappreciated, issues inherent in the estimates of seasonal prediction skill from the past performance of seasonal forecasts are highlighted. These include the following: 1) the stability of estimated skill depends on the length of the time series over which seasonal forecasts are verified, leading to scenarios where error bars on the estimated skill could be of the same magnitude as the skill itself; 2) a single estimate of skill obtained from the verification over a given forecast time series, because of variation in the signal-to-noise ratio from one year to another, is generally not representative of seasonal prediction skill conditional to sea surface temperature anomalies on a case-by-case basis. These issues raise questions on the interpretation, presentation, and utilization of skill information for seasonal prediction efforts and present opportunities for increased dialogue and the exploration of ways for their optimal utilization by decision makers.
Corresponding author address: Dr. Arun Kumar, NOAA/NWS/NCEP, Climate Prediction Center, 5200 Auth Road, Rm. 800, Camp Springs, MD 20746. Email: arun.kumar@noaa.gov