A Lightning Data Assimilation Technique for Mesoscale Forecast Models

Edward R. Mansell Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
,
Conrad L. Ziegler NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Conrad L. Ziegler in
Current site
Google Scholar
PubMed
Close
, and
Donald R. MacGorman NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Donald R. MacGorman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lightning observations have been assimilated into a mesoscale model for improvement of forecast initial conditions. Data are used from the National Lightning Detection Network (cloud-to-ground lightning detection) and a Lightning Mapping Array (total lightning detection) that was installed in western Kansas–eastern Colorado. The assimilation method uses lightning as a proxy for the presence or absence of deep convection. During assimilation, lightning data are used to control the Kain–Fritsch (KF) convection parameterization scheme. The KF scheme can be forced to try to produce convection where lightning indicated storms, and, conversely, can optionally be prevented from producing spurious convection where no lightning was observed. Up to 1 g kg−1 of water vapor may be added to the boundary layer when the KF convection is too weak. The method does not employ any lightning–rainfall relationships, but rather allows the KF scheme to generate heating and cooling rates from its modeled convection. The method could therefore easily be used for real-time assimilation of any source of lightning observations. For the case study, the lightning assimilation was successful in generating cold pools that were present in the surface observations at initialization of the forecast. The resulting forecast showed considerably more skill than the control forecast, especially in the first few hours as convection was triggered by the propagation of the cold pool boundary.

Corresponding author address: Edward Mansell, NOAA/NSSL/National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: mansell@ou.edu

Abstract

Lightning observations have been assimilated into a mesoscale model for improvement of forecast initial conditions. Data are used from the National Lightning Detection Network (cloud-to-ground lightning detection) and a Lightning Mapping Array (total lightning detection) that was installed in western Kansas–eastern Colorado. The assimilation method uses lightning as a proxy for the presence or absence of deep convection. During assimilation, lightning data are used to control the Kain–Fritsch (KF) convection parameterization scheme. The KF scheme can be forced to try to produce convection where lightning indicated storms, and, conversely, can optionally be prevented from producing spurious convection where no lightning was observed. Up to 1 g kg−1 of water vapor may be added to the boundary layer when the KF convection is too weak. The method does not employ any lightning–rainfall relationships, but rather allows the KF scheme to generate heating and cooling rates from its modeled convection. The method could therefore easily be used for real-time assimilation of any source of lightning observations. For the case study, the lightning assimilation was successful in generating cold pools that were present in the surface observations at initialization of the forecast. The resulting forecast showed considerably more skill than the control forecast, especially in the first few hours as convection was triggered by the propagation of the cold pool boundary.

Corresponding author address: Edward Mansell, NOAA/NSSL/National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. Email: mansell@ou.edu

Save
  • Alexander, G. D., J. A. Weinman, V. M. Karyampudi, W. S. Olson, and A. C. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on the forecasts of the 1993 superstorm. Mon. Wea. Rev., 127 , 14331457.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and K. E. Mitchell, 1998: Progress on the NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, Second Symp. on Integrated Observing Systems, Phoenix, AZ, Amer. Meteor. Soc., 10–11.

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Benjamin, S. G., S. S. Weygandt, S. E. Koch, and J. M. Brown, 2006: Assimilation of lightning data into RUC model convection forecasting. Preprints, Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., CD-ROM, 4.3.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677692.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129 , 108122.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., J. S. Kain, and M. E. Baldwin, 2006: Bowing convective systems in a popular operational model: Are they for real? Wea. Forecasting, 21 , 307324.

    • Search Google Scholar
    • Export Citation
  • Chang, D-E., J. A. Weinman, C. A. Morales, and W. S. Olson, 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129 , 18091833.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. national lightning detection network. J. Geophys. Res., 103 , 90359044.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., K. D. Raeder, and L. Fillion, 2003: Examination of the sensitivity of forecast precipitation rates to possible perturbations of initial conditions. Tellus, 55A , 88105.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., and S. Bélair, 2004: Tangent linear aspects of the Kain–Fritsch moist convective parameterization scheme. Mon. Wea. Rev., 132 , 24772494.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., M. Tanguay, N. Ek, C. Pagé, and S. Pellerin, 2005: Balanced coupling between vertical motion and diabatic heating for variational data assimilation. Preprints, Symp. on Nowcasting and Very Short Range Forecasting, Toulouse, France, World Weather Research Programme, CD-ROM, 3.10. [Available online at http://www.meteo.fr/cic/wsn05/DVD/index.html.].

  • Fritsch, J. M., and C. F. Chappell, 1981: Preliminary numerical tests of the modification of mesoscale convective systems. J. Appl. Meteor., 20 , 910921.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D. J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13 , 377395.

    • Search Google Scholar
    • Export Citation
  • Gallus Jr., W. A., and M. Segal, 2001: Impact of improved initialization of mesoscale features on convective system rainfall in 10-km Eta simulations. Wea. Forecasting, 16 , 680696.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., and M. W. Maier, 1982: Radar echo height related to cloud-ground lightning in south Florida. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 330–333.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation into an operational mesoscale model. Meteor. Appl., 4 , 269277.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49 , 93106.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Covection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Lhermitte, R., and P. R. Krehbiel, 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., 17 , 162171.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • Marshall, C. H., K. C. Crawford, K. E. Mitchell, and D. J. Stensrud, 2003: The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data. Wea. Forecasting, 18 , 748768.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133 , 19611977.

    • Search Google Scholar
    • Export Citation
  • Pereira Fo, A. J., K. C. Crawford, and D. J. Stensrud, 1999: Mesoscale precipitation fields. Part II: Hydrometeorologic modeling. J. Appl. Meteor., 38 , 102125.

    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26 , 35733576.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, cited. 1998: Changes to the NCEP operational “early” Eta analysis/forecast system. NWS Tech. Procedures Bull. 447, National Oceanic and Atmospheric Administration/National Weather Service, 36 pp. [Available online at http://www.nws.noaa.gov/om/tpb/447.htm.].

  • Rogers, R. F., J. M. Fritsch, and W. C. Lambert, 2000: A simple technique for using radar data in the dynamic initialization of a mesoscale model. Mon. Wea. Rev., 128 , 25602574.

    • Search Google Scholar
    • Export Citation
  • Seo, D. J., 1998: Real-time estimation of rainfall fields using radar rainfall and rain gauge data. J. Hydrol., 208 , 3752.

  • Stensrud, D. J., 1996: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53 , 35033527.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J-W. Bao, 1992: Behaviors of variational and nudging assimilation techniques with a chaotic low-order model. Mon. Wea. Rev., 120 , 30163028.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. M. Fritsch, 1994a: Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of a mesoscale initial condition. Mon. Wea. Rev., 122 , 20682083.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. M. Fritsch, 1994b: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Wea. Rev., 122 , 20842104.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., G. S. Manikin, E. Rogers, and K. E. Mitchell, 1999: Importance of cold pools to NCEP Mesoscale Eta model forecasts. Wea. Forecasting, 14 , 650670.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. P., P. R. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109 .D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., and H-M. Hsu, 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128 , 22112231.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1999: Issues in forecasting mesoscale convective systems: An observational and modeling perspective. Storms, R. Pielke Jr. and R. Pielke Sr., Eds., Vol. 2, Routledge Press, 26–42.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. J. Martin, R. A. Pielke Sr., and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52 , 263285.

  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125 , 10011026.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 949 271 9
PDF Downloads 334 100 5