Precipitation Distribution Associated with Landfalling Tropical Cyclones over the Eastern United States

Eyad Atallah Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Eyad Atallah in
Current site
Google Scholar
PubMed
Close
,
Lance F. Bosart Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
, and
Anantha R. Aiyyer Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Anantha R. Aiyyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclones (TCs) making landfall over the United States are examined by separating those associated with precipitation predominantly left of their tracks from those with the same to the right of their tracks. Composites of atmospheric variables for these two TC categories are performed and analyzed using potential vorticity (PV) and quasigeostrophic (QG) frameworks. Dynamical signatures are retrieved from these composites to help understand the evolution of precipitation in these storms. Results indicate that a left of track precipitation distribution (e.g., Floyd 1999) is characteristic of TCs undergoing extratropical transition (ET). In these cases, a positively tilted midlatitude trough approaches the TC from the northwest, shifting precipitation to the north-northwest of the TC. Potential vorticity redistribution through diabatic heating leads to enhanced ridging over and downstream of the TC, resulting in an increase in the cyclonic advection of vorticity by the thermal wind over the transitioning TC. A right of track precipitation distribution is characteristic of TCs interacting with a downstream ridge (e.g., David 1979). When the downstream ridge amplifies in response to TC-induced diabatic heating ahead of a weak midlatitude trough, the PV gradient between the TC and the downstream ridge is accentuated, producing a region of enhanced positive PV advection (and cyclonic vorticity advection by the thermal wind) over the TC. The diabatic enhancement of the downstream ridge is instrumental in the redistribution of precipitation about the transitioning TCs in both cases and poses a significant forecast challenge.

* Current affiliation: Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University at Raleigh, Raleigh, North Carolina

Corresponding author address: Anantha Aiyyer, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University at Raleigh, Raleigh, NC 27695. Email: aaiyyer@ncsu.edu

Abstract

Tropical cyclones (TCs) making landfall over the United States are examined by separating those associated with precipitation predominantly left of their tracks from those with the same to the right of their tracks. Composites of atmospheric variables for these two TC categories are performed and analyzed using potential vorticity (PV) and quasigeostrophic (QG) frameworks. Dynamical signatures are retrieved from these composites to help understand the evolution of precipitation in these storms. Results indicate that a left of track precipitation distribution (e.g., Floyd 1999) is characteristic of TCs undergoing extratropical transition (ET). In these cases, a positively tilted midlatitude trough approaches the TC from the northwest, shifting precipitation to the north-northwest of the TC. Potential vorticity redistribution through diabatic heating leads to enhanced ridging over and downstream of the TC, resulting in an increase in the cyclonic advection of vorticity by the thermal wind over the transitioning TC. A right of track precipitation distribution is characteristic of TCs interacting with a downstream ridge (e.g., David 1979). When the downstream ridge amplifies in response to TC-induced diabatic heating ahead of a weak midlatitude trough, the PV gradient between the TC and the downstream ridge is accentuated, producing a region of enhanced positive PV advection (and cyclonic vorticity advection by the thermal wind) over the TC. The diabatic enhancement of the downstream ridge is instrumental in the redistribution of precipitation about the transitioning TCs in both cases and poses a significant forecast challenge.

* Current affiliation: Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University at Raleigh, Raleigh, North Carolina

Corresponding author address: Anantha Aiyyer, Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University at Raleigh, Raleigh, NC 27695. Email: aaiyyer@ncsu.edu

Save
  • Abraham, J., J. W. Strapp, C. Fogarty, and M. Wolde, 2004: Extratropical transition of Hurricane Michael: An aircraft investigation. Bull. Amer. Meteor. Soc., 85 , 13231339.

    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130 , 10471075.

    • Search Google Scholar
    • Export Citation
  • Agustí-Panareda, A., S. L. Gray, G. C. Craig, and C. Thorncroft, 2005: The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133 , 15621573.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1990: Recent applications of the Penn State/NCAR Mesoscale Model to synoptic, mesoscale, and climate studies. Bull. Amer. Meteor. Soc., 71 , 16101629.

    • Search Google Scholar
    • Export Citation
  • Arnott, J. M., J. L. Evans, and F. Chiaromonte, 2004: Characterization of extratropical transition using cluster analysis. Mon. Wea. Rev., 132 , 29162937.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and L. F. Bosart, 2003: Extratropical transition and precipitation distribution: A case study of Floyd (1999). Mon. Wea. Rev., 131 , 10631081.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. H. Carr, 1978: A case study of excessive rainfall centered around Wellsville, New York, 20–21 June 1972. Mon. Wea. Rev., 106 , 348362.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and D. B. Dean, 1991: The Agnes rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment. Wea. Forecasting, 6 , 515537.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123 , 32683291.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128 , 322352.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., G. Vaughan, and P. Panagi, 1998: Analysis of an ex-tropical cyclone after reintensifying as a warm-core extratropical cyclone. Quart. J. Roy. Meteor. Soc., 124 , 23292356.

    • Search Google Scholar
    • Export Citation
  • Carr, F. H., and J. P. Millard, 1985: A composite study of comma clouds and their association with severe weather over the Great Plains. Mon. Wea. Rev., 113 , 370387.

    • Search Google Scholar
    • Export Citation
  • Chien, H. H., and P. J. Smith, 1977: Synoptic and kinetic energy analysis of Hurricane Camille (1969) during transit across the southeastern United States. Mon. Wea. Rev., 105 , 6777.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2003: Numerical simulation of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131 , 29052926.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Dare, R. A., and N. E. Davidson, 2004: Characteristics of tropical cyclones in the Australian region. Mon. Wea. Rev., 132 , 30493065.

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53 , 20762088.

  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125 , 30413072.

    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982a: The transformation of tropical storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations. Mon. Wea. Rev., 110 , 385411.

    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982b: The transformation of tropical storm Agnes into an extratropical cyclone. Part II: Moisture, vorticity, and kinetic energy budgets. Mon. Wea. Rev., 110 , 412433.

    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1942: Ein neuer hydrodynamischer wirbelsatz. Meteor. Z., 59 , 271281.

  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131 , 909925.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and B. E. Prater-Mayes, 2004: Factors affecting the posttransition intensification of Hurricane Irene (1999). Mon. Wea. Rev., 132 , 13551368.

    • Search Google Scholar
    • Export Citation
  • Foley, G. R., and B. N. Hanstrum, 1994: The capture of tropical cyclones by cold fronts off the west coast of Australia. Wea. Forecasting, 9 , 577592.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128 , 26132633.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128 , 26342653.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131 , 585616.

  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14 , 546564.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134 , 553578.

    • Search Google Scholar
    • Export Citation
  • Henderson, J. M., G. M. Lackmann, and J. R. Gyakum, 1998: An analysis of Hurricane Opal’s forecast track errors using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 127 , 292307.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. Berrisford, 1988: A potential vorticity view of the storm of 15–16 October 1987. Weather, 43 , 122129.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61 , 114119.

  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18 , 10521092.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E. M., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD–ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15 , 373396.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130 , 22402259.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and M. K. Yau, 2001: Sensitivity testing of extratropical transitions using potential vorticity inversions to modify initial conditions: Hurricane Earl case study. Mon. Wea. Rev., 129 , 16171636.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and M. K. Yau, 2003: The influence of the downstream state on extratropical transition: Hurricane Earl (1998) case study. Mon. Wea. Rev., 131 , 19101929.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52 , 35933606.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. J. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125 , 26992708.

    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126 , 25552579.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1985: A study on the changes of the three-dimensional structure and movement speed of the typhoon through its life time. Tech. Rep. 14, Meteorological Research Institute, Japan, 117 pp.

  • Palmén, E., 1958: Vertical circulation and release of kinetic energy during the development of Hurricane Hazel into an extratropical cyclone. Tellus, 10 , 123.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2003: Simulations of the extratropical transition of tropical cyclones: Contributions by the midlatitude upper-level trough to re-intensification. Mon. Wea. Rev., 131 , 21122128.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19 , 936949.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66 , 6887.

  • Sinclair, M. R., 1993: A diagnostic study of the extratropical precipitation resulting from Tropical Cyclone Bola. Mon. Wea. Rev., 121 , 26902707.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 2002: Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Wea. Rev., 130 , 590609.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 2004: Extratropical transition of southwest Pacific tropical cyclones. Part II: Midlatitude circulation characteristics. Mon. Wea. Rev., 132 , 21452168.

    • Search Google Scholar
    • Export Citation
  • Sutcliffe, R. C., 1947: A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73 , 370383.

  • Sutcliffe, R. C., and A. G. Forsdyke, 1950: The theory and use of upper air thickness patterns in forecasting. Quart. J. Roy. Meteor. Soc., 76 , 189217.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and S. C. Jones, 2000: The extratropical transitions of Hurricanes Felix and Iris in 1995. Mon. Wea. Rev., 128 , 947972.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1978: On the interpretation of the diagnostic quasi-geostrophic omega equation. Mon. Wea. Rev., 106 , 131137.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1350 481 15
PDF Downloads 694 207 15