Dual-Doppler Analysis of Winds and Vorticity Budget Terms near a Tornado

Joshua Wurman Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Joshua Wurman in
Current site
Google Scholar
PubMed
Close
,
Yvette Richardson The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette Richardson in
Current site
Google Scholar
PubMed
Close
,
Curtis Alexander School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Curtis Alexander in
Current site
Google Scholar
PubMed
Close
,
Stephen Weygandt National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Stephen Weygandt in
Current site
Google Scholar
PubMed
Close
, and
Peng Fei Zhang Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Peng Fei Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three-dimensional dual-Doppler observations with unprecedented finescale spatial and temporal resolution are used to characterize the vector wind field and vorticity generation terms in and near a weak, short-lived tornado. The beam widths of the two Doppler on Wheels (DOW) mobile radars, at the range of the tornado, are 250 m with gate lengths of 75 m, resulting in a resolution of less than 107 m3. One of the DOWs collected data during the 240 s prior to the formation of the tornado, enabling examination of the genesis process. A single set of volumetric scans suitable for dual-Doppler analyses were completed by both DOWs, permitting the calculation of vertical and horizontal vorticity, divergence, and stretching and tilting terms in the vorticity budget of the large but weak tornado and its surroundings, but no local tendency terms. Analyses of the dual-Doppler vector wind fields document, for the first time in a supercellular tornado, revealed several structures expected to be associated with tornadoes, including the tilting of horizontal vorticity into the vertical near the tornado, and stretching of vertical vorticity in the region of the tornado. The analyses are compared to conceptual and computer models of tornadic storms, confirming the existence of various phenomena and processes, although some model predictions, particularly those concerning the distribution of horizontal vorticity, could not be verified through these analyses. The observed magnitudes of stretching of vertical vorticity and tilting of horizontal vorticity are consistent with those necessary for generating the observed vorticity near the tornado.

Corresponding author address: Joshua Wurman, Center for Severe Weather Research, 1945 Vassar Circle, Boulder, CO 80305. Email: jwurman@cswr.org

Abstract

Three-dimensional dual-Doppler observations with unprecedented finescale spatial and temporal resolution are used to characterize the vector wind field and vorticity generation terms in and near a weak, short-lived tornado. The beam widths of the two Doppler on Wheels (DOW) mobile radars, at the range of the tornado, are 250 m with gate lengths of 75 m, resulting in a resolution of less than 107 m3. One of the DOWs collected data during the 240 s prior to the formation of the tornado, enabling examination of the genesis process. A single set of volumetric scans suitable for dual-Doppler analyses were completed by both DOWs, permitting the calculation of vertical and horizontal vorticity, divergence, and stretching and tilting terms in the vorticity budget of the large but weak tornado and its surroundings, but no local tendency terms. Analyses of the dual-Doppler vector wind fields document, for the first time in a supercellular tornado, revealed several structures expected to be associated with tornadoes, including the tilting of horizontal vorticity into the vertical near the tornado, and stretching of vertical vorticity in the region of the tornado. The analyses are compared to conceptual and computer models of tornadic storms, confirming the existence of various phenomena and processes, although some model predictions, particularly those concerning the distribution of horizontal vorticity, could not be verified through these analyses. The observed magnitudes of stretching of vertical vorticity and tilting of horizontal vorticity are consistent with those necessary for generating the observed vorticity near the tornado.

Corresponding author address: Joshua Wurman, Center for Severe Weather Research, 1945 Vassar Circle, Boulder, CO 80305. Email: jwurman@cswr.org

Save
  • Adlerman, E. J., 2003: Numerical simulations of cyclic storm behavior: Mesocyclogenesis and tornadogenesis. Ph.D. dissertation, University of Oklahoma, 217 pp. [Available from School of Meteorology, University of Oklahoma, 100 East Boyd, Suite 1310, Norman, OK 73019.].

  • Adlerman, E. J., K. K. Droegemeier, and R. P. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56 , 20452069.

    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The evolution and environment of the tornadoes. Mon. Wea. Rev., 133 , 7296.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and A. L. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81 , 29392951.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. G. Gaddy, 2001: Airborne pseudo-dual-Doppler analysis of a rear-inflow jet and deep convergence zone within a supercell. Mon. Wea. Rev., 129 , 22702289.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis. Mon. Wea. Rev., 131 , 29542967.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, R. L. Tanamachi, S. Frasier, and A. L. Pazmany, 2007: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135 , 475506.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1977: Gust front evolution and tornado genesis as viewed by Doppler radar. J. Appl. Meteor., 16 , 333338.

  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106 , 9951011.

  • Brandes, E. A., 1981: Finestructure of the Del City-Edmond tornadic mesocirculation. Mon. Wea. Rev., 109 , 635647.

  • Brandes, E. A., 1984a: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112 , 10331052.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984b: Vertical vorticity generation and mesoscyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112 , 22532269.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., R. P. Davies-Jones, and B. C. Johnson, 1988: Streamwise vorticity effects on supercell morphology and persistence. J. Atmos. Sci., 45 , 947963.

    • Search Google Scholar
    • Export Citation
  • Burgess, D., M. Magsig, J. Wurman, D. Dowell, and Y. Richardson, 2002: A detailed WSR-88D and DOW radar analysis of the Oklahoma City tornado of 3 May 1999. Wea. Forecasting, 17 , 456471.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., M. J. Carpenter, and C. D. Burghart, 1985: Doppler radar sampling limitation in convective storms. J. Atmos. Oceanic Technol., 2 , 357361.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125 , 25622582.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130 , 26262648.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130 , 26262648.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Y. P. Richardson, and J. Wurman, 2002: Observations of the formation of low-level rotation: The 5 June 2001 Sumner County, Kansas, storm. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., CD-ROM, 12.3.

  • Fujita, T. T., 1975: : New evidence from the April 3-4, 1974 tornadoes. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 248–255.

  • Fujita, T. T., and R. M. Wakimoto, 1982: Anticyclonic tornadoes in 1980 and 1981. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 213–216.

  • Jensen, B., T. P. Marshall, M. A. Mabey, and E. N. Rasmussen, 1983: Storm scale structure of the Pampa storm. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 85–88.

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40 , 359377.

  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38 , 15581580.

    • Search Google Scholar
    • Export Citation
  • Lee, W-C., and J. Wurman, 2005: The diagnosed structure of the Mulhall tornado. J. Atmos. Sci., 62 , 23732393.

  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107 , 11841197.

    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1963: Severe local storms: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 1–30.

  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130 , 16921721.

    • Search Google Scholar
    • Export Citation
  • NCDC, 1998: Storm Data. Vol. 40, 165 pp.

  • Rasmussen, E. N., R. E. Peterson, J. E. Minor, and B. D. Campbell, 1982: Evolutionary characteristics and photogrammetric determination of windspeeds within the Tulia outbreak tornadoes 28 May 1980. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 301–304.

  • Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B. Bumgarner, 1975: Dual-Doppler observation of a tornadic storm. J. Appl. Meteor., 14 , 15211530.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108 , 16071625.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., B. C. Johnson, K. W. Johnson, J. S. Bradberry, J. J. Stephens, K. K. Wagner, R. B. Wilhelmson, and J. B. Klemp, 1981: The morphology of several tornadic storms on 20 May 1977. J. Atmos. Sci., 38 , 16431663.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y., D. Dowell, and J. Wurman, 2001: High resolution dual-Doppler analyses of two thunderstorms during the pre-tornadogenesis and mature tornado stages. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 295–297.

  • Roberts, R. D., and J. W. Wilson, 1995: The genesis of three nonsupercell tornadoes observed with dual-Doppler radar. Mon. Wea. Rev., 123 , 34083436.

    • Search Google Scholar
    • Export Citation
  • Romine, G., L. J. Wicker, and M. S. Gilmore, 2004: Analysis of simulated supercell tornadogenesis. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 9.1.

  • Sperow, K. S., H. B. Bluestein, and T. Gal-Chen, 1995: Testing a Doppler analysis method: The two-step, second order Lax-Wendroff scheme. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 296–298.

  • Stout, G. E., and F. A. Huff, 1953: Radar records Illinois tornadogenesis. Bull. Amer. Meteor. Soc., 34 , 281284.

  • Trapp, J. R., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127 , 16931705.

    • Search Google Scholar
    • Export Citation
  • Trapp, J. R., and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54 , 113133.

  • Wakimoto, R. M., and C. Liu, 1998: The Garden City, Kansas, storm during VORTEX 95. Part II: The wall cloud and tornado. Mon. Wea. Rev., 126 , 393408.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev., 128 , 565592.

  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52 , 26752703.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., D. Dowell, Y. Richardson, and R. Wilhelmson, 2002: A large eddy simulation of a tornadic supercell: Comparison with observations. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 262–263.

  • Wood, V. T., R. A. Brown, and D. Sirmans, 2001: Technique for improving detection of WSR-88D mesocyclone signatures by increasing angular sampling. Wea. Forecasting, 16 , 177184.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2001: The DOW mobile multiple-Doppler network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 95–97.

  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17 , 473504.

  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128 , 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and M. Randall, 2001: An inexpensive, mobile, rapid-scan radar. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., CD-ROM, P3.4.

  • Wurman, J., and C. Alexander, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes. Mon. Wea. Rev., 133 , 97119.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, and E. Rasmussen, 1996: Fine scale Doppler radar observation of tornadoes. Science, 272 , 17741777.

  • Wurman, J., J. M. Straka, E. N. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14 , 15021512.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P-F. Zhang, 2007a: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135 , 736758.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., C. Alexander, P. Robinson, and Y. Richardson, 2007b: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 88 , 3146.

    • Search Google Scholar
    • Export Citation
  • Xue, M., 2004: Tornadogenesis within a simulated supercell storm. Preprints, 22d Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., CD-ROM. 9.6.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 669 156 15
PDF Downloads 342 92 11