A Lagrangian Objective Analysis Technique for Assimilating In Situ Observations with Multiple-Radar-Derived Airflow

Conrad L. Ziegler NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Conrad L. Ziegler in
Current site
Google Scholar
PubMed
Close
,
Michael S. Buban Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael S. Buban in
Current site
Google Scholar
PubMed
Close
, and
Erik N. Rasmussen Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Erik N. Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new Lagrangian analysis technique is developed to assimilate in situ boundary layer measurements using multi-Doppler-derived wind fields, providing output fields of water vapor mixing ratio, potential temperature, and virtual potential temperature from which the lifting condensation level (LCL) and relative humidity (RH) fields are derived. The Lagrangian analysis employs a continuity principle to bidirectionally distribute observed values of conservative variables with the 3D, evolving boundary layer airflow, followed by temporal and spatial interpolation to an analysis grid. Cloud is inferred at any grid point whose height z > zLCL or equivalently where RH ≥ 100%. Lagrangian analysis of the cumulus field is placed in the context of gridded analyses of visible satellite imagery and photogrammetric cloud-base area analyses. Brief illustrative examples of boundary layer morphology derived with the Lagrangian analysis are presented based on data collected during the International H2O Project (IHOP): 1) a dryline on 22 May 2002; 2) a cold-frontal–dryline “triple point” intersection on 24 May 2002. The Lagrangian analysis preserves the sharp thermal gradients across the cold front and drylines and reveals the presence of undulations and plumes of water vapor mixing ratio and virtual potential temperature associated with deep penetrative updraft cells and convective roll circulations. Derived cloud fields are consistent with satellite-inferred cloud cover and cloud-base locations.

Corresponding author address: Dr. Conrad L. Ziegler, National Severe Storms Laboratory, Forecast Research and Development Division, 120 David L. Boren Blvd., Norman, OK 73072. Email: conrad.ziegler@noaa.gov

Abstract

A new Lagrangian analysis technique is developed to assimilate in situ boundary layer measurements using multi-Doppler-derived wind fields, providing output fields of water vapor mixing ratio, potential temperature, and virtual potential temperature from which the lifting condensation level (LCL) and relative humidity (RH) fields are derived. The Lagrangian analysis employs a continuity principle to bidirectionally distribute observed values of conservative variables with the 3D, evolving boundary layer airflow, followed by temporal and spatial interpolation to an analysis grid. Cloud is inferred at any grid point whose height z > zLCL or equivalently where RH ≥ 100%. Lagrangian analysis of the cumulus field is placed in the context of gridded analyses of visible satellite imagery and photogrammetric cloud-base area analyses. Brief illustrative examples of boundary layer morphology derived with the Lagrangian analysis are presented based on data collected during the International H2O Project (IHOP): 1) a dryline on 22 May 2002; 2) a cold-frontal–dryline “triple point” intersection on 24 May 2002. The Lagrangian analysis preserves the sharp thermal gradients across the cold front and drylines and reveals the presence of undulations and plumes of water vapor mixing ratio and virtual potential temperature associated with deep penetrative updraft cells and convective roll circulations. Derived cloud fields are consistent with satellite-inferred cloud cover and cloud-base locations.

Corresponding author address: Dr. Conrad L. Ziegler, National Severe Storms Laboratory, Forecast Research and Development Division, 120 David L. Boren Blvd., Norman, OK 73072. Email: conrad.ziegler@noaa.gov

Save
  • Achtemeier, G. L., 1986: The impact of data boundaries upon a successive corrections objective analysis of limited-area datasets. Mon. Wea. Rev., 114 , 4049.

    • Search Google Scholar
    • Export Citation
  • Arnott, N. R., Y. P. Richardson, J. M. Wurman, and J. Lutz, 2003: A solar alignment technique for determining mobile radar pointing angles. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 492–494.

  • Arnott, N. R., Y. P. Richardson, J. M. Wurman, and E. N. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134 , 311335.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-69, 60 pp. [NTIS COM-73-10781.].

  • Barnes, S. L., 1994: Applications of the Barnes objective analysis scheme. Part I: Effects of undersampling, wave position, and station randomness. J. Atmos. Oceanic Technol., 11 , 14331448.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S., and N. Seaman, 1985: A simple scheme for objective analysis in curved flow. Mon. Wea. Rev., 113 , 11841198.

  • Betts, A. K., 1984: Boundary layer thermodynamics of a High Plains severe storm. Mon. Wea. Rev., 112 , 21992211.

  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86 , 12631274.

    • Search Google Scholar
    • Export Citation
  • Buban, M. S., 2005: The dryline on 22 May 2002 during IHOP: Ground-radar and in-situ data analyses of the dryline and boundary layer evolution. M.S. thesis, School of Meteorology, University of Oklahoma, 71 pp.

  • Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. P. Richardson, 2005: The structure and evolution of the dryline and surrounding boundary layer on 22 May 2002 during IHOP. Preprints, 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, J6J.3.

  • Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. P. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135 , 24732505.

    • Search Google Scholar
    • Export Citation
  • Demoz, B., and Coauthors, 2006: The dryline on 22 May 2002 during IHOP_2002: Convective-scale measurements at the profiling site. Mon. Wea. Rev., 134 , 294310.

    • Search Google Scholar
    • Export Citation
  • Dosio, A., J. V-G. de Arellano, A. A. M. Holtslag, and P. J. H. Builtjes, 2005: Relating Eulerian and Lagrangian statistics for the turbulent dispersion in the atmospheric convective boundary layer. J. Atmos. Sci., 62 , 11751191.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134 , 7991.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., R. Conzemius, and D. Mironov, 2004: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy simulations. J. Atmos. Sci., 61 , 281295.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134 , 251272.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. desJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22 , 14871503.

    • Search Google Scholar
    • Export Citation
  • Kuznetsov, L., K. Ide, and C. Jones, 2003: A method for assimilation of Lagrangian data. Mon. Wea. Rev., 131 , 22472260.

  • Lazzara, M. A., and Coauthors, 1999: The Man computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc., 80 , 271284.

    • Search Google Scholar
    • Export Citation
  • McCalla, T. R., 1967: Introduction to Numerical Methods and FORTRAN Programming. Wiley, 359 pp.

  • Mohr, C. G., L. J. Miller, R. L. Vaughan, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3 , 144161.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Pauley, P. M., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118 , 11451163.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., R. Davies-Jones, and R. L. Holle, 2003: Terrestrial photogrammetry of weather images acquired in uncontrolled circumstances. J. Atmos. Oceanic Technol., 20 , 17901803.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., D. W. Burgess, R. A. Maddox, L. C. Showell, T. C. Marshall, and D. K. Lauritsen, 1990: Testing a mobile version of a Cross-Chain Loran Atmospheric (M-CLASS) Sounding System. Bull. Amer. Meteor. Soc., 71 , 173180.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1955: An investigation of the structure and dynamics of an intense surface frontal zone. J. Meteor., 12 , 542552.

  • Segal, M., and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat flux gradients. Bull. Amer. Meteor. Soc., 73 , 15931604.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for fine scale meteorological observations. J. Atmos. Oceanic Technol., 13 , 921936.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24 , 4956.

  • Trapp, R. J., and C. A. Doswell III, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17 , 105120.

  • Wakimoto, R. M., H. V. Murphey, E. V. Browell, and S. Ismail, 2006: The “triple point” on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE analyses of the frontal boundaries and convection initiation. Mon. Wea. Rev., 134 , 231250.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134 , 522.

  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124 , 769784.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., H. B. Bluestein, and A. L. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134 , 273293.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., 2001: The DOW mobile multiple-Doppler network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 95–97.

  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128 , 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14 , 15021512.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev., 121 , 11341151.

  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., W. Martin, R. A. Pielke Sr., and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52 , 263285.

  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125 , 10011026.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, Y. P. Richardson, R. M. Rabin, and M. S. Buban, 2003: Relation of radar-derived kinematic features and in-situ moisture to cumulus development on 24 May 2002 during IHOP. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., CD-ROM, 11A.7.

  • Ziegler, C. L., D. Kennedy, and E. N. Rasmussen, 2004: A wireless network for collection and synthesis of mobile mesoscale weather observations. J. Atmos. Oceanic Technol., 21 , 16591669.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. N. Rasmussen, M. S. Buban, Y. P. Richardson, L. J. Miller, and R. M. Rabin, 2007: The “triple point” on 24 May 2002 during IHOP. Part II: Ground-radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135 , 24432472.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 51 3
PDF Downloads 77 24 1