Evaluation of MM5 Optically Thin Clouds over Europe in Fall Using ICESat Lidar Spaceborne Observations

H. Chepfer LMD/IPSL, Université Pierre et Marie Curie, Paris, France

Search for other papers by H. Chepfer in
Current site
Google Scholar
PubMed
Close
,
M. Chiriaco LMD/IPSL, Université Pierre et Marie Curie, Paris, France

Search for other papers by M. Chiriaco in
Current site
Google Scholar
PubMed
Close
,
R. Vautard LMD/IPSL, Université Pierre et Marie Curie, Paris, France

Search for other papers by R. Vautard in
Current site
Google Scholar
PubMed
Close
, and
J. Spinhirne NASA GSFC, Greenbelt, Maryland

Search for other papers by J. Spinhirne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The description of clouds in mesoscale models has progressed significantly during recent years by improving microphysical schemes with more physical parameterizations deduced from observations. Recently, the first lidar in space, the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geosciences Laser Altimeter System, has collected a valuable dataset that improves the knowledge of occurrence and macrophysical properties of clouds, and particularly high-altitude clouds, which are usually optically thin. This study evaluates the capability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to reproduce optically thin clouds using the ICESat October–November 2003 dataset. Initial and boundary conditions are prescribed from NCEP products and MM5 run over the European continent with a 40-km spatial resolution. Spaceborne lidar profiles are diagnosed from model outputs and compared with the observed ones at the same location and time. One month of simulations–observations comparisons shows that the model correctly reproduces cloud structures on average, but underestimates the thinnest clouds (by 0%–20%) and overestimates less thin clouds in the upper troposphere (altitude >6 km). The total low-level water cloud amount (altitude <6 km) appears fairly well reproduced, although the masking effect of higher clouds does not allow for a firm conclusion. The clouds are rarely simulated and observed simultaneously, 50% for high clouds and 20% for low clouds. The lack of high-altitude very thin clouds is possibly due to dry biases in the upper-troposphere humidity fields used to force the model. The overestimation of optically less thin cloud may be due to an overestimation of the cloud lifetime or water vapor supersaturation around ice clouds that is not taken into account in the model. When the upper troposphere and low warm clouds appear in the model at the same time and location as in the observations, they are optically too thick, likely because their water/ice content and particle concentration are overestimated simultaneously.

Corresponding author address: Helene Chepfer, LMD/IPSL, Université Pierre et Marie Curie, 4, Place Jussieu, Paris, France. Email: chepfer@lmd.polytechnique.fr

Abstract

The description of clouds in mesoscale models has progressed significantly during recent years by improving microphysical schemes with more physical parameterizations deduced from observations. Recently, the first lidar in space, the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geosciences Laser Altimeter System, has collected a valuable dataset that improves the knowledge of occurrence and macrophysical properties of clouds, and particularly high-altitude clouds, which are usually optically thin. This study evaluates the capability of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to reproduce optically thin clouds using the ICESat October–November 2003 dataset. Initial and boundary conditions are prescribed from NCEP products and MM5 run over the European continent with a 40-km spatial resolution. Spaceborne lidar profiles are diagnosed from model outputs and compared with the observed ones at the same location and time. One month of simulations–observations comparisons shows that the model correctly reproduces cloud structures on average, but underestimates the thinnest clouds (by 0%–20%) and overestimates less thin clouds in the upper troposphere (altitude >6 km). The total low-level water cloud amount (altitude <6 km) appears fairly well reproduced, although the masking effect of higher clouds does not allow for a firm conclusion. The clouds are rarely simulated and observed simultaneously, 50% for high clouds and 20% for low clouds. The lack of high-altitude very thin clouds is possibly due to dry biases in the upper-troposphere humidity fields used to force the model. The overestimation of optically less thin cloud may be due to an overestimation of the cloud lifetime or water vapor supersaturation around ice clouds that is not taken into account in the model. When the upper troposphere and low warm clouds appear in the model at the same time and location as in the observations, they are optically too thick, likely because their water/ice content and particle concentration are overestimated simultaneously.

Corresponding author address: Helene Chepfer, LMD/IPSL, Université Pierre et Marie Curie, 4, Place Jussieu, Paris, France. Email: chepfer@lmd.polytechnique.fr

Save
  • Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurements program. Phys. Today, 56 , 3845.

  • Baum, B. A., P. F. Soulen, K. I. Strabala, M. D. King, S. A. Ackerman, W. P. Menzel, and P. Yang, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. II. Cloud thermodynamic phase. J. Geophys. Res., 105 , 11 78111 792.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121 , 255270.

    • Search Google Scholar
    • Export Citation
  • Bissonnette, L. R., G. Roy, and F. Fabry, 2001: Range–height scans of lidar depolarization for characterizing properties and phase of clouds and precipitation. J. Atmos. Oceanic Technol., 18 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., H. Le Treut, and M. B. Baker, 1995: Precipitation and radiation modeling in a general circulation model: Introduction of cloud microphysical processes. J. Geophys. Res., 100 , 16 39516 414.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott III, and I. H. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instrument and data processing. J. Atmos. Oceanic Technol., 19 , 431442.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, 1999: Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E LITE campaign. Geophys. Res. Lett., 26 , 22032206.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant, 2001: Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. J. Geophys. Res., 106 , 79557966.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., R. Vautard, H. Chepfer, M. Haeffelin, J. Dudhia, Y. Wanherdrick, Y. Morille, and A. Protat, 2006: The ability of MM5 to simulate ice clouds: Systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA Atmospheric Observatory. Mon. Wea. Rev., 134 , 897918.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M-S. Yao, W. Kovari, and K. K-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9 , 270304.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., F. M. Bréon, M. Leroy, A. Podaire, A. Brickaud, J. C. Buriez, and G. Sèze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32 , 598615.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., U. Schumann, M. Helten, H. Smit, and P-H. Wang, 2000: Ice-supersaturated regions and subvisible cirrus in the northern midlatitude upper troposphere. J. Geophys. Res., 105 , 22 74322 754.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105 , 14 74714 760.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Guichard, F., D. B. Parsons, J. Dudhia, and J. Bresch, 2003: Evaluating mesoscale model predictions of clouds and radiation with SGP ARM data over a seasonal timescale. Mon. Wea. Rev., 131 , 926944.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, 1993: Description of the NCAR Community Climate Model (CCM2). NCAR Tech. Note NCAR/TN-382+STR, National Center for Atmospheric Research, Boulder, CO, 108 pp.

  • Haeffelin, M., and Coauthors, 2005: SIRTA, a French atmospheric observatory for clouds, aerosols and water vapor. Ann. Geophys., 23 , 253275.

    • Search Google Scholar
    • Export Citation
  • Hart, W. D., J. D. Spinhirne, S. P. Palm, and D. L. Hlavka, 2005: Height distribution between cloud and aerosol layers from GLAS spaceborne lidar in the Indian Ocean region. Geophys. Res. Lett., 32 .L22S06, doi:10.1029/2005GL023671.

    • Search Google Scholar
    • Export Citation
  • Heckman, S. T., and W. R. Cotton, 1993: Mesoscale numerical simulation of cirrus clouds—FIRE case study and sensitivity analysis. Mon. Wea. Rev., 121 , 22642284.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. J. Donner, 1990: A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47 , 18651877.

    • Search Google Scholar
    • Export Citation
  • Hlavka, D. L., S. P. Palm, W. D. Hart, J. D. Spinhirne, M. J. McGill, and E. J. Welton, 2005: Aerosols and cloud optical depth from GLAS: Results and verification for an October 2003 California fire smoke case. Geophys. Res. Lett., 32 .L22S07, doi:10.109/2005GL023413.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. D. Behera, E. J. O’Connor, and A. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31 .L05106, doi:10.1029/2003GL018977.

    • Search Google Scholar
    • Export Citation
  • Jenson, E., D. Starr, and O. B. Toon, 2004: Mission investigates tropical cirrus clouds. Eos, Trans. Amer. Geophys. Union, 85 .45, doi:10.1029/2004EO050002.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., W. B. Rossow, and D. P. Wylie, 1996: Comparison of the climatologies of high-level clouds from HIRS and ISCCP. J. Climate, 9 , 28502879.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 1996: Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor, and surface properties. J. Atmos. Oceanic Technol., 13 , 777794.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., B. Rockel, H. Kapitza, and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr. Phys. Freien Atmos., 65 , 3557.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., B. Rockel, H. Schiller, and L. Kornblueh, 1998: 3-D simulation of clouds with subgrid fluctuations of temperature and humidity. Atmos. Res., 47–48 , 327341.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Liou, K-N., 2002: An Introduction to Atmospheric Radiation. International Geophysics Series, Vol. 84, Academic Press, 175 pp.

  • Liu, Y., F. Chen, T. Warner, and S. Swerdlin, 2004: Improvements to surface flux computations in the MRF PBL scheme, and refinements to urban processes in the NOAH land-surface model with the NCAR/ATEC real-time FDDA and forecast system. Proc. First Joint WRF/MM5 User’s Workshop, Boulder, CO, NCAR.

  • Mace, G. G., C. Jakob, and K. P. Moran, 1998: Validation of hydrometeor occurrence predicted by the ECMWF model using millimeter wave radar data. Geophys. Res. Lett., 25 , 16451648.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53 , 28132825.

  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53 , 24012423.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and G. L. Stephens, 2001: CloudSat instrument requirements as determined from ECMWF forecasts of global cloudiness. J. Geophys. Res., 106 , 17 71317 734.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., G. L. Stephens, and A. C. M. Beljaars, 1999: A validation survey of the ECMWF prognostic cloud scheme using LITE. Geophys. Res. Lett., 26 , 14171420.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. P. Garber, D. F. Young, R. F. Arduini, and Y. Takano, 1998: Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55 , 33133339.

    • Search Google Scholar
    • Export Citation
  • Nicolas, F., L. R. Bissonnette, and P. H. Flamant, 1997: Lidar effective multiple-scattering coefficients in cirrus clouds. Appl. Opt., 36 , 34583468.

    • Search Google Scholar
    • Export Citation
  • Noel, V., H. Chepfer, M. Haeffelin, and Y. Morille, 2006: Classification of ice crystal shapes in midlatitude ice clouds from three years of lidar observations over the SIRTA observatory. J. Atmos. Sci., 63 , 29782991.

    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., J-F. Gayet, K. Gierens, J. Ström, H. Ovarlez, F. Auriol, R. Busen, and U. Schumann, 2002: Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA. Geophys. Res. Lett., 29 .1813, doi:10.1029/2001GL014440.

    • Search Google Scholar
    • Export Citation
  • Palm, S. P., A. Benedetti, and J. Spinhirne, 2005: Validation of ECMWF global forecast model parameters using GLAS atmospheric channel measurements. Geophys. Res. Lett., 32 .L22S09, doi:10.1029/2005GL023535.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1973: Lidar and radiometric observations of cirrus clouds. J. Atmos. Sci., 30 , 11911204.

  • Platt, C. M. R., N. L. Abshire, and G. T. McNice, 1978: Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals. J. Appl. Meteor., 17 , 12201224.

    • Search Google Scholar
    • Export Citation
  • Randall, D., B. Albrecht, S. Cox, D. Johnson, P. Minnis, W. Rossow, and D. Starr, 1996: On FIRE at ten. Advances in Geophysics, Vol. 38, Academic Press, 137–177.

  • Raschke, E., P. Flamant, Y. Fouquart, P. Hignett, H. Isaka, P. R. Jonas, H. Sundquist, and P. Wendling, 1998: Cloud radiation studies during the European Cloud Radiation Experiment (EUCREX). Surv. Geophys., 19 , 89138.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Sapucci, L. F., L. A. T. Machado, R. B. da Silveira, G. Fisch, and J. F. G. Monico, 2005: Analysis of relative humidity sensors at the WMO Radiosonde Intercomparison Experiment in Brazil. J. Atmos. Oceanic Technol., 22 , 664678.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72 , 18481866.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and S. Benson, 2001: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58 , 21032112.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, 2005: Cloud and aerosol measurements from GLAS: Overview and initial results. Geophys. Res. Lett., 32 .L22S03, doi:10.1029/2005GL023507.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to the climate and climatic feedback. J. Atmos. Sci., 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46 , 319.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and R. C. Miake-Lye, 1998: Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS). Geophys. Res. Lett., 25 , 11091112.

    • Search Google Scholar
    • Export Citation
  • Troën, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary. Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Search Google Scholar
    • Export Citation
  • Wang, J., D. J. Carlson, D. B. Parsons, T. F. Hock, D. Lauritsen, H. L. Cole, K. Beierle, and E. Chamberlain, 2003: Performance of operational radiosonde humidity sensors in direct comparison with chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett., 30 .1860, doi:10.1029/2003GL016985.

    • Search Google Scholar
    • Export Citation
  • Wetzel, M. A., and G. T. Bates, 1995: Comparison of simulated cloud cover with satellite observations over the western United States. J. Climate, 8 , 296314.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and P-H. Wang, 1999: Comparison of SAGE-II and HIRS co-located cloud height measurements. Geophys. Res. Lett., 26 , 33733376.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., P. Piironen, W. Wolf, and E. Eloranta, 1995: Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths. J. Atmos. Sci., 52 , 43274343.

    • Search Google Scholar
    • Export Citation
  • Yakohata, T., S. Eimori, T. Nozawa, Y. Tsushima, T. Ogura, and M. Kimoto, 2005: Climate response to volcanic forcing: Validation of climate sensitivity of coupled atmosphere-ocean general circulation model. Geophys. Res. Lett., 32 .L21710, doi:10.1029/2005GL023542.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K-N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71 , 223248.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 147 73
PDF Downloads 31 13 0