Abstract
A set of five-member ensemble forecasts initialized daily for 48 days during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment period are performed with the ECMWF monthly forecasting system in order to assess its skill in predicting a Madden–Julian oscillation (MJO) event. Results show that the model is skillful in predicting the evolution of the MJO up to about 14 days, but the amplitude of the MJO is damped after a few days of integration. In addition, the model has some deficiencies in propagating the MJO through the Maritime Continent. The same experiment framework is used to quantify the impacts of changing the model physics, the ocean model, the atmospheric horizontal resolution, and the initial conditions on the skill of the monthly forecasting system. Results show that there is a scope for extending the skillful range of the operational monthly forecasting system to predict the evolution of the MJO by at least a week. This is achieved by using an improved cloud parameterization together with a better representation of the mixing of the upper ocean. An additional set of experiments suggests that degrading the quality of the initial conditions (by using the 15-yr ECMWF Re-Analysis instead of the 40-yr ECMWF Re-Analysis) significantly degrades the skill of the model to predict an MJO event and that increasing the horizontal resolution of the atmospheric mode had only a minor impact on the MJO forecasts. In addition, results show that there is a significant sensitivity to the initial perturbations of the ensemble members, and therefore, targeting perturbations on the MJO could improve the skill of the monthly forecasting system. While the propagation of the MJO was sensitive to most of the changes described in this paper, only the change in cloud parameterization improved the strength of the MJO. The propagation of the MJO over the Maritime Continent remains an issue.
Corresponding author address: Frédéric Vitart, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, United Kingdom. Email: nec@ecmwf.int