Estimation of Predictability with a Newly Derived Index to Quantify Similarity among Ensemble Members

Tomohito J. Yamada Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Tomohito J. Yamada in
Current site
Google Scholar
PubMed
Close
,
Randal D. Koster NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
,
Shinjiro Kanae Research Institute for Humanity and Nature, Kyoto, and Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Shinjiro Kanae in
Current site
Google Scholar
PubMed
Close
, and
Taikan Oki Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Search for other papers by Taikan Oki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study reveals the mathematical structure of a statistical index, Ω, that quantifies similarity among ensemble members in a weather forecast. Previous approaches for quantifying predictability estimate separately the phase and shape characteristics of a forecast ensemble. The diagnostic Ω, on the other hand, characterizes the similarity (across ensemble members) of both aspects together with a simple expression. The diagnostic Ω is thus more mathematically versatile than previous indices.

Corresponding author address: Tomohito J. Yamada, Be 607, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. Email: tomohito@iis.u-tokyo.ac.jp

Abstract

This study reveals the mathematical structure of a statistical index, Ω, that quantifies similarity among ensemble members in a weather forecast. Previous approaches for quantifying predictability estimate separately the phase and shape characteristics of a forecast ensemble. The diagnostic Ω, on the other hand, characterizes the similarity (across ensemble members) of both aspects together with a simple expression. The diagnostic Ω is thus more mathematically versatile than previous indices.

Corresponding author address: Tomohito J. Yamada, Be 607, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. Email: tomohito@iis.u-tokyo.ac.jp

Save
  • Dirmeyer, P. A., R. D. Koster, and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7 , 11771198.

    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21 , 739759.

  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., H. Mukougawa, and S. Yoden, 1992: Medium-range forecast skill variation and blocking transition: A case study. Mon. Wea. Rev., 120 , 16161627.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., P. A. Dirmeyer, A. N. Hahmann, R. Ipelaar, L. Tyahla, P. Cox, and M. J. Suarez, 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3 , 363375.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7 , 590610.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., 2005: Roots of ensemble forecasting. Mon. Wea. Rev., 133 , 18651885.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Miyakoda, K., J. Sirutis, and J. Ploshay, 1986: One-month forecast experiments—Without anomaly boundary forcings. Mon. Wea. Rev., 114 , 23632401.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., 1988: The impact of ensemble forecasts of predictability. Quart. J. Roy. Meteor. Soc., 114 , 463493.

  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES atmospheric general circulation model. CGER’s Supercomputer Monogr. Rep., No. 3, NIES, 1–48.

  • Phelps, M. W., A. Kumar, and J. J. O’Brien, 2004: Potential predictability in the NCEP CPC dynamical seasonal forecast system. J. Climate, 17 , 37753785.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11 , 109120.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modeling. Quart. J. Roy. Meteor. Soc., 121 , 699704.

    • Search Google Scholar
    • Export Citation
  • Scheffe, H., 1959: The Analysis of Variance. John Wiley and Sons, 477 pp.

  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81 , 25932606.

  • Stern, W., and K. Miyakoda, 1995: Feasibility of seasonal forecasts inferred from multiple GCM simulations. J. Climate, 8 , 10711085.

  • Sugi, M., R. Kawamura, and N. Sato, 1997: A study of SST-forced variability and potential predictability of seasonal mean fields using the JMA global model. J. Meteor. Soc. Japan, 75 , 717736.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1920: Diffusion by continuous movements. Proc. London Math. Soc., 20 , 196212.

  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, A164 , 476490.

  • Thompson, P., 1957: Uncertainty of initial state as a factor in predictability of large-scale atmospheric flow patterns. Tellus, 9 , 275295.

    • Search Google Scholar
    • Export Citation
  • Wiener, N., 1930: Generalized harmonic analysis. Acta Math., 55 , 117258.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 391 112 37
PDF Downloads 204 54 3